订货须知:

- 1、订货时应注明电动机型号、工作制、负载持续率、功率、额定电压、
 - 例: YZR160M₂-6 S₃-40% 7.5KW 380V 1000r/minF级。
- 2、需要双轴伸时,必须在订货时标明,否则只供给单轴电动机。
- 3、本样本的技术数据仅供参考,容有变动。

HONGTAI

Limited liability company

无锡市宏泰起重电机股份有限公司 WUXI HONGTAI ELECTRICAL MACHINERY LIMITED LIBILITY COMPANY

址:江苏省无锡市惠山区前洲镇工业园区万寿路17号 话:0510-83390388 8 3 3 9 1 0 7 4

精工卓越开拓创新

真: 0510-83390288

总经理室:0510-83392288

真:0510-83395888

http://www.hongtaimotor.com

无锡市宏泰起重电机股份有限公司

目 录 CONTENTS

起重及冶金用三相异步电动机及派生系列产品

1、YZR、YZ系列起重及冶金用
三相异步电动机 3~22
2、 Y Z B (F) 系列起重及冶金用变频调速
三相异步电动机······23~34
3、 Y Z R W系列起重及冶金用涡流制动绕线转子
三相异步电动机······35~44
4、 Y Z E、 Y Z R E 系列起重及冶金用电磁制动

三相异步电动机 ……45~48

在产品之间 我们崇尚创新的价值 品质致美 我们追求细节的力量 精雕细琢 成就,品质的巅峰 卓越服务 工业市场的成功因素 孜孜以求百分百 宏泰品牌,务求完美诠释......

承载科技光芒 触发卓越动力

2

企业宗旨:

为 顾 客 创 造 价 值 , 为 员 工 创 造 机 遇 , 为 社 会 创 造 效 益 。

企业精神:

敬业、团队、创新

经 营 理 念 :)

诚信务实、以客为先

竞争策略:

研制最好的产品,提供最好的服务,创建最好的品牌。

资质荣誉 ERTIFICATES & HONORS

无锡古全泰起童电机股份有限公司

江苏省重合同守信用企业

江苏省人民政府

公司简介 OMPANY INTRODUCE

无锡市宏泰起重电机股份有限公司(原无锡市宏达起重电机厂)始建于1958年199晚制。是国内较早从事起重和冶金电动机的生产专业厂家,是中国重机协会、上海电机行业协会会员企业。企业先后荣获国家水利部部级先进企业、无锡市名牌产品、无锡市知名商标、AAA级业、重合同守信用企业等一系列荣誉称号。企业拥有自营进出口权,在技术研发方面力量雄厚,无锡市宏泰电机技术研发中心为无锡市级研发中心。是YZP重冶金变频电机GB/T21972.MZRW源制动电机GB/T21974起重冶金电机试验方法GB/T21975-2008等国家标准的制订者。

本公司在近二年投入 1. **无**臣资进行技术改造,并于 2 0 0 **搬**赶新厂区,新老厂区占地面积 6 5 3 6 方。平 米,建筑面积 3 8 5 8 方来。在质量上,坚持精雕细琢造精品;在服务上,提倡卓越服务百分百。在国内港口、起重、冶金、建筑等行业具有良好的声誉及一定的市场占有率,部分产品出口美国、日本、俄罗斯、朝鲜、东南亚等国家和地区。

无锡宏泰将以先进的技术、严谨的管理、高质量的产品、完善的服务奉献给各方朋友。

- 1.1、YZR、YZ系列是最新设计的电动机,具有过载能力大和机械强度高的特点,特别适用于驱动各种类型的冶金及 起重机械或其它类似设备。YZR系列为绕线转子电动机、YZ系列为笼型电动机。
- ●——— 1.2、电动机能在下列环境条件下正常运行:
 - (1)冷却介质温度不超过60℃(冶金用电动机)或40℃(起重用电动机)
 - (2)海拔不超过1000米。
 - (3)经常的、显著的机械振动和冲击。
- 1.3、电动机在下述负载条件下能正常工作
 - (1)经常的起动与逆转
 - (2)经常的电气或机械制动
- 1.4、电动机的额定频率为50赫,额定电压为380伏
- ●──── 1.5、接法:功率为132千瓦和小于132千瓦的定子绕 组用Y接法,其余的用△接法
- 1.6、型号说明
 Y
 Z
 R
 132
 M
 1
 6
 极数

 分金及起重用
 统线转子
 机座长度
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4<
- ▶── 1.7、输出功率和转速

基准工作制($S_340\%$)时的额定输出功率和同步转速见表1(笼型电动机制造粗线框内的规格)

表(2)

额定功率 (KW)	最大转矩/额定转矩
≤5.5	2.3
>5.5 ~ 11	2.5
>11	2.8

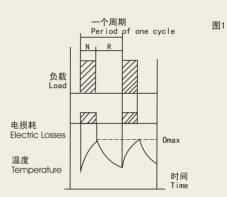
● 1.8、基准工作制时,YZR系列电动机在额定电压下的最大转矩对额定转矩之比的保证值见表2

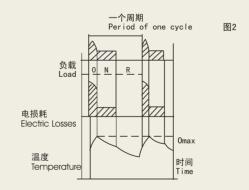
表(1)

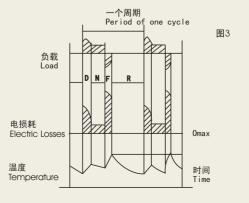
				衣[1]				
机座	同步转速	1000	750	600				
112M		1.5						
400	M1	2.2						
132	M2					3.7		
	M1	5.5						
160	M2	7.5						
	L	11	7.5					
180L		15	11					
200L		22	15					
225M		30	22					
250	M1	37	30					
250	M2	45	37					
200	S	55	45	37				
280	М	75	55	45				
315	S	90	75	55				
313	М	110	90	75				
	М		110	90				
355	L1		132	110				
	L2		160	132				
	L1		200	160				
400	L2		250	200				

● 1.9、基准工作制时,YZ系列电动机在额定电压下的最大转矩和堵转转矩对额定转矩之比的保证值见表3

表(3)


额定功率(KW)	最大转矩/额定转矩	堵转转矩/额定转矩
≤5.5	2.0	2.0
>5.5 ~ 11	2.3	2.3
>11	2.5	2.5




- 2.1 电动机的额定电压为380V,额定频率为50HZ。
- 2.2 电动机适用于断续周期性负荷,根据负荷的不同性质,电动机的工作制分为:
- 2.2.1 断续周期性工作制(S3): 是一系列相同的工作周期,每一周期包括一段恒定负载运转的时间和一段停止并断能的时间(见图1) 在这种类型中,每一同期的起动电流应对电动机的温升无明显的影响。每10分钟为一工作周期,即每 小时起动六次。
- 2.2.2 带起动的断续周期性工作制(S4):是一系列相同的工作周期,每一周期包括一段起动时间,一段恒定负载运转的时间和一段 停止并断能时间(见图2);每小时起动次数分为150、300及600次。
- 2.2.3 带电制动的断续同期性工作制(S5): 是一系列相同的工作周期,每一周期由一段起动时间,一段恒定负载运转时间,一段快速 电制动时间和一段停止并断能时间所组成(见图3)。
- 2.3 选用电动机时,各种起动及制动状态均需按等效发热折算成每小时等效全起动次数。以该等效全起动次数确定电动机的定额。折 算典型例子见表4。 折算的方法:
- 点动(最终速度不超过额定转速的25%)四次相当于一次全起动:电制动(制动到额定转速的1/3)一次相当于0.8次全起动。
- 2.4 电动机的基准工作方式为S,-40%,各工作制下电动机的技术数据见表5。电动机名牌数据一般按基准工作制供给,如用户有特殊 要求则按用户要求供给数据。当电动机需要按S,~S。工作制之外的方式运行时,需与制造厂协商。

表(4)

					~(·)			
			起制动状态					
工作方式	每小时起动次数	每小时点动次数	每小时制动次数	每小时制动并反转次数	热等效起动次数			
S3	6	0	0	0				
S3	4	8	0	0	6			
S3	2	8	2	0	_			
S4	150	0	0	0				
S4	100	200	0	0				
S5	80	0	80	0				
S5	65	130	65	0	150			
S5	30	160	30	30				
S4	300	0	0	0				
S4	200	400	0	0				
S5	160	0	160	0	300			
S5	130	260	130	0	300			
S5	60	320	60	60				
S4	600	0	0	0				
S4	400	800	0	0				
S5	320	0	320	0	600			
S5	260	520	260	0				
S5	120	640	120	120				

断续周期性工作方式类型S3

N 在额定条件下运行时间

R 停止和断能时间

Qmax 在工作的周期中达到的最高温度 负载持续率

$$CDF = \frac{N}{N+R} \times 100\%$$

带起动的断续周期性工作方式类型S4

D-起动时间

R-停止和断能时间

N-在额定条件下运行时间

Qmax-在工作周期中达到的最高温度

负载持续率

$$CDF = \frac{D+N}{D+N+R} \times 100\%$$

带电制动的断续周期性工作方式类型S5

D-起动时间

N-在额定条件下运行时间

F-电制动时间

R-停止和断能时间

Qmax-在工作周期中达到的最高温度 负载持续率

$$CDF = \frac{D+N+F}{D+N+F+R} \times 100\%$$

2 电动机的工作方式及技术数据(表5 – 1) DUTY-TYPE AND TECHNICAL DATA – 1

工作方式			S2																转动									
			32							6次/	时 6 sta	rts/hour															惯量	重量
FC		30 minute	es	60	minutes						25%					40)%					60%			100%)	Inertia	
项目	Rated output		Speed		Rated urrent	Speed	Rated output	Rated urrent	Speed	Rated output	Rated urrent	Speed	Rated output	Rated urrent	Speed		Starting torque		EIT	Power factor	Rated output	Rated urrent	Speed	Rated output	Rated urrent	Speed	movement	Weight
机座号	KW	А	r/min	KW	А	r/min	KW	А	r/min	KW	А	r/min	KW	А	r/min	ratcd torquc	ratcd torquc	ratcd torquc	%	CosΦ	KW	А	r/min	KW	А	r/min	Kgm²	(Kg)
,					1000	转/分 1	000r/min													1(000转/分	1000r/	min					
YZ 112M	1.8	4.9	892	1.5	4.25	920	2.2	6.5	810	1.8	4.9	892	1.5	4.25	920	2.7	2.44	4.47	69.5	0.765	1.1	2.7	946	0.8	3.5	980	0.02	58
132M1	2.5	6.5	920	2.2	5.9	935	3.0	7.5	804	2.5	6.5	920	2.2	5.9	935	2.9	3.1	5.16	74	0.745	1.8	5.3	950	1.5	4.9	960	0.053	80
132M2	4.0	9.2	915	3.7	8.8	912	5	11.6	890	4	9.2	915	3.7	8.8	912	2.8	3.0	5.54	79	0.79	3.0	7.5	940	2.8	7.2	945	0.058	91.5
160M1	6.3	14.1	922	5.5	12.5	933	7.5	16.8	903	6.3	14.1	922	5.5	12.5	933	2.7	2.5	4.9	80.6	0.83	5.0	11.5	940	4.0	10	953	0.105	118.5
160M2	8.5	18	943	7.5	15.9	948	11	25.4	926	8.5	18	943	7.5	15.9	948	2.9	2.4	5.52	83	0.84	6.3	14.2	956	5.5	13	961	0.133	131.5
160L	15	32	920	11	24.6	953	15	32	920	13	28.7	936	11	24.6	953	2.9	2.7	6.17	84	0.85	9	20.6	964	7.5	18.8	972	0.178	152
					750	转/分 7	'50r/min													-	750转/分	750r/n	nin					
YZ 160L	9	21.1	694	7.5	18	705	11	27.4	675	9	21.1	694	7.5	18	705	2.7	2.5	5.1	82	0.74	6	15.6	717	5	14.2	724	0.178	152
180L	13	30	675	11	25.8	694	15	35.3	654	13	30	675	11	25.8	694	2.5	2.6	4.9	80.9	0.811	9	21.5	710	7.5	19.2	718	0.33	205
200L	18.5	40	697	15	33.1	710	22	47.5	686	18.5	40	697	15	33.1	710	2.8	2.7	6.1	85	0.8	13	28.1	714	11	26	720	0.58	276
225M	26	53.5	701	22	45.8	712	33	69	687	26	53.5	701	22	45.8	712	2.9	2.9	6.2	84	0.83	18.5	40	718	17	37.5	720	0.75	347
250M1	35	74	681	30	63.3	694	42	89	663	35	74	681	30	63.3	694	2.54	2.7	5.47	85	0.84	26	56	702	22	45	717	1.33	462

2 电动机的工作方式及技术数据(表5-2-1) DUTY-TYPE AND TECHNICAL DATA-1

Miles Wight March Miles Mile	FC 项目 R 112M 132M1 132M2 160M1 160M2 160L 180L 200L 225M	Rated output KW 1.8 2.5 4.0 6.3 8.5 13	11 Rated current A 5.3 6.5 9.7 16.4 19.6 28.6	12 Rated rotor current A 13.4 12.9 14.2 29.4 29.8 31.6	8 n speed r/min 815 892 900 921 930	1.5 2.2 3.7 5.5 7.5	11 Rated current A 1000 4.63 6.05 9.2 15	12 Rated rotor current A 12.5 12.6 14.5 25.7	speed r/min 1000r/m 866 908 908	output KW i n 2.2 3.0 5	I1 Rated current A	I2 Rated rotor current A 18.4 16.1	speed r/min 725	output KW	I1 Rated current A	I2 Rated rotor current A	speed r/min	output	I1 Rated current	6次/时 6sta I2 Rated rotor	40 Pullout torque /rated	No-load current	speed	%	factor (cosΦ)	output KW	I1 Rated current A	I2 Rated rotor current A	speed r/min	output KW	I1 Rated current A	I2 Rated rotor current A	n speed r/min
## Part of the property of the	项目 R 112M 132M1 132M2 160M1 160M2 160L 180L 200L 225M	1.8 2.5 4.0 6.3 8.5 13	11 Rated current A 5.3 6.5 9.7 16.4 19.6 28.6	12 Rated rotor current A 13.4 12.9 14.2 29.4 29.8 31.6	n speed r/min 815 892 900 921 930	Rated output KW 1.5 2.2 3.7 5.5 7.5	11 Rated current A 1000 4.63 6.05 9.2 15	12 Rated rotor current A 12.5 12.6 14.5 25.7	speed r/min 1000r/m 866 908 908	output KW i n 2.2 3.0 5	I1 Rated current A	I2 Rated rotor current A 18.4 16.1	speed r/min 725	output KW	I1 Rated current A	I2 Rated rotor current A	speed r/min	output	I1 Rated current	I2 Rated rotor	Pullout torque /rated	No-load current	speed	%	factor (cosΦ)	output KW	I1 Rated current A	I2 Rated rotor current A	speed r/min	output KW	I1 Rated current A	I2 Rated rotor current A	speed
Subject Sub	项目 R 112M 132M1 132M2 160M1 160M2 160L 180L 200L 225M	1.8 2.5 4.0 6.3 8.5 13	11 Rated current A 5.3 6.5 9.7 16.4 19.6 28.6	12 Rated rotor current A 13.4 12.9 14.2 29.4 29.8 31.6	n speed r/min 815 892 900 921 930	Rated output KW 1.5 2.2 3.7 5.5 7.5	11 Rated current A 1000 4.63 6.05 9.2 15	12 Rated rotor current A 12.5 12.6 14.5 25.7	speed r/min 1000r/m 866 908 908	output KW i n 2.2 3.0 5	I1 Rated current A	I2 Rated rotor current A 18.4 16.1	speed r/min 725	output KW	I1 Rated current A	I2 Rated rotor current A	speed r/min	output	current	rotor	Pullout torque /rated	No-load current	speed	%	factor (cosΦ)	output KW	I1 Rated current A	I2 Rated rotor current A	speed r/min	output KW	I1 Rated current A	I2 Rated rotor current A	speed
### Part output Rated output Rated output Rated current Rated current	R 112M 132M1 132M2 160M1 160M2 160L 180L 200L 225M	1.8 2.5 4.0 6.3 8.5 13	5.3 6.5 9.7 16.4 19.6 28.6	13.4 12.9 14.2 29.4 29.8 31.6	speed r/min 815 892 900 921 930	1.5 2.2 3.7 5.5 7.5	Rated current A 1000 4.63 6.05 9.2 15	Rated rotor current A 0转/分 1 12.5 12.6 14.5 25.7	speed r/min 1000r/m 866 908 908	output KW i n 2.2 3.0 5	Rated current A 6.6	Rated rotor current A 18.4 16.1	speed r/min 725	output KW	Rated current A	Rated rotor current A	speed r/min	output	current	rotor	torque /rated	current	speed	%	factor (cosΦ)	output KW	Rated current A	Rated rotor current A	speed r/min	output KW	Rated current A	Rated rotor current A	speed
株田 大田 大田 大田 大田 大田 大田 大田	R 112M 132M1 132M2 160M1 160M2 160L 180L 200L 225M	1.8 2.5 4.0 6.3 8.5 13	5.3 6.5 9.7 16.4 19.6 28.6	13.4 12.9 14.2 29.4 29.8 31.6	r/min 815 892 900 921 930	1.5 2.2 3.7 5.5 7.5	1000 4.63 6.05 9.2	current A 0转/分 1 12.5 12.6 14.5 25.7	r/min 1000r/m 866 908 908	KW in 2.2 3.0 5	current A 6.6	18.4 16.1	r/min 725	KW 1.8	current A	current A	r/min	- aupai	current		/rated				(cosΦ)	KW	current A	current A	r/min	KW	current A	current A	
No. N	R 112M 132M1 132M2 160M1 160M2 160L 180L 200L 225M	1.8 2.5 4.0 6.3 8.5 13	5.3 6.5 9.7 16.4 19.6 28.6	12.9 14.2 29.4 29.8 31.6	815 892 900 921 930	1.5 2.2 3.7 5.5 7.5	1000 4.63 6.05 9.2 15	12.5 12.6 14.5 25.7	866 908 908	2.2 3.0 5	6.6	16.1	725	1.8				KVV	А	А	torque	А	r/min					A				A 5 16	17111111
YZR 112M 1.8 5.3 13.4 815 1.5 4.63 12.5 866 2.2 6.6 18.4 725 1.8 5.3 13.4 815 1.5 4.6 12.9 892 2.2 6.05 12.9 893 3.0 8 16.1 855 2.5 6.5 12.9 892 2.2 6.6 12.6 908 3.0 8 16.1 855 2.5 6.5 12.9 892 2.2 6.6 12.6 908 3.0 8 16.1 855 2.5 6.5 12.9 892 2.2 6.1 12.6 2.9 4.04 908 73 0.76 1.8 5.4 97 14.2 900 3.7 9.2 14.5 908 73 0.76 18.5 5.4 97 14.2 900 3.7 9.2 14.5 2.5 5.58 908 77 0.8 3.0 7.9 10.2 937 2.5 7.2 8.4 <td>132M1 132M2 160M1 160M2 160L 180L 200L 225M</td> <td>2.5 4.0 6.3 8.5 13</td> <td>6.5 9.7 16.4 19.6 28.6</td> <td>12.9 14.2 29.4 29.8 31.6</td> <td>892 900 921 930</td> <td>2.2 3.7 5.5 7.5</td> <td>4.63 6.05 9.2 15</td> <td>12.5 12.6 14.5 25.7</td> <td>866 908 908</td> <td>2.2 3.0 5</td> <td>8</td> <td>16.1</td> <td></td> <td></td> <td>5.3</td> <td>13.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1000</td> <td>牧/分 1</td> <td>000r/mi</td> <td>n</td> <td></td> <td></td> <td>0.0</td> <td>3.5</td> <td>5.16</td> <td></td>	132M1 132M2 160M1 160M2 160L 180L 200L 225M	2.5 4.0 6.3 8.5 13	6.5 9.7 16.4 19.6 28.6	12.9 14.2 29.4 29.8 31.6	892 900 921 930	2.2 3.7 5.5 7.5	4.63 6.05 9.2 15	12.5 12.6 14.5 25.7	866 908 908	2.2 3.0 5	8	16.1			5.3	13.4								1000	牧/分 1	000r/mi	n			0.0	3.5	5.16	
132M1 2.5 6.5 12.9 892 2.2 6.05 12.6 908 3.0 8 16.1 855 2.5 6.5 12.9 892 2.2 6.1 12.6 2.9 4.04 908 73 0.76 1.8 5.4 9 924 1.5 5 7.3 132M2 4.0 9.7 14.2 900 3.7 9.2 14.5 908 5 12.3 18.2 875 4 9.7 14.2 900 3.7 9.2 14.5 2.5 5.58 908 77 0.8 3.0 7.9 10.2 937 2.5 7.2 8.4 160M1 6.3 16.4 29.4 921 5.5 15 25.7 930 7.5 18.5 35.4 910 6.3 16.4 29.4 921 5.5 15 25.7 2.6 7.95 930 75.7 0.74 5.0 14 22.9 935 4 12.5 18.1 160M2 8.5 19.6 29.8 930 7.5 18 26.5 940 11 24.6 39.6 908 8.5 19.6 29.8 930 7.5 18 26.5 2.5 13 28.6 31.6 942 11 24.5 27.6 957 15 34.7 39 920 13 28.6 31.6 942 11 24.9 27.6 2.5 13 945 82 0.82 9 21 22.3 952 7.5 18.8 18.1 18.1 18.1 18.1 18.1 18.1 18	132M1 132M2 160M1 160M2 160L 180L 200L 225M	2.5 4.0 6.3 8.5 13	6.5 9.7 16.4 19.6 28.6	12.9 14.2 29.4 29.8 31.6	892 900 921 930	2.2 3.7 5.5 7.5	6.05 9.2 15	12.6 14.5 25.7	908	3.0	8	16.1			5.3	13.4														0.0	3.5	5 16	
132M2 4.0 9.7 14.2 900 3.7 9.2 14.5 908 5 12.3 18.2 875 4 9.7 14.2 900 3.7 9.2 14.5 25.6 5.58 908 77 0.8 3.0 7.9 10.2 937 2.5 7.2 8.4 160M1 6.3 16.4 29.4 921 5.5 15 25.7 930 7.5 18.5 35.4 910 6.3 16.4 29.4 921 5.5 15 25.7 2.6 7.95 930 75.7 0.74 5.0 14 22.9 935 4 12.5 18.1 160M2 8.5 19.6 29.8 930 7.5 18 26.5 940 11 24.6 39.6 908 8.5 19.6 29.8 930 7.5 18 26.5 28.1 1.2 940 79.4 0.8 6.3 16 21.7 949 5.5 15 18.1 160L 13 28.6 31.6 942 11 24.5 27.6 957 15 34.7 39 920 13 28.6 31.6 942 11 24.9 27.6 2.5 13 945 82 0.82 9 21 22.3 952 7.5 18.8 18.1 180L 17 36.7 49.8 955 15 33.8 46.5 962 20 42.6 58.7 946 17 36.7 49.8 955 15 33.8 46.5 3.2 18.8 962 83 0.81 13 29.7 37.3 968 11 25.5 31.4 25.5 25.6 15 25.7 26.5 15 25.7 26.5 15 25.7 26.5 15 25.7 26.5 15 25.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26	132M2 160M1 160M2 160L 180L 200L 225M	4.0 6.3 8.5 13	9.7 16.4 19.6 28.6	14.2 29.4 29.8 31.6	900 921 930	3.7 5.5 7.5	9.2 15	14.5 25.7	908	5			855	2.5																			940
160M1 6.3 16.4 29.4 921 5.5 15 25.7 930 7.5 18.5 35.4 910 6.3 16.4 29.4 921 5.5 15 25.7 2.6 7.95 930 75.7 0.74 5.0 14 22.9 935 4 12.5 18. 160M2 8.5 19.6 29.8 930 7.5 18 26.5 940 11 24.6 39.6 908 8.5 19.6 29.8 930 7.5 18 26.5 2.8 11.2 940 79.4 0.8 6.3 16 21.7 949 5.5 15 18. 18. 160L 13 28.6 31.6 942 11 24.5 27.6 957 15 34.7 39 920 13 28.6 31.6 942 11 24.9 27.6 2.5 13 945 82 0.82 9 21 22.3 952 7.5 18.8 18. 18. 180L 17 36.7 49.8 955 15 33.8 46.5 962 20 42.6 58.7 946 17 36.7 49.8 955 15 33.8 46.5 3.2 18.8 962 83 0.81 13 29.7 37.3 968 11 25.5 31. 200L 26 56.1 82.4 956 22 49.1 69.9 964 33 62 68 942 26 56.1 82.4 956 22 49.5 69.9 2.88 26.6 964 86 0.803 19 44.5 60.5 969 17 40.5 52. 225M 34 70 85 957 30 62 74.4 962 40 80 101 947 34 70 85 957 30 62 74.4 3.1 29.9 962 88.3 0.83 26 55 64.5 968 22 50 42.6 250M2 52 97 110 958 45 84.5 95 965 63 121 134 947 52 97 110 958 45 84.5 95 3.1 28.2 965 90.6 0.89 39 73 83 969 33 64 71 280S	160M1 160M2 160L 180L 200L 225M	6.3 8.5 13	16.4 19.6 28.6	29.4 29.8 31.6	921 930	5.5 7.5	15	25.7			12.3	10 2																				7.3	940
160M2 8.5 19.6 29.8 930 7.5 18 26.5 940 11 24.6 39.6 908 8.5 19.6 29.8 930 7.5 18 26.5 940 11 24.6 39.6 908 8.5 19.6 29.8 930 7.5 18 26.5 940 11 24.6 39.6 908 8.5 19.6 29.8 930 7.5 18 26.5 2.8 11.2 940 79.4 0.8 6.3 16 21.7 949 5.5 15 18.1 160L 13 28.6 31.6 942 11 24.9 27.6 2.5 13 945 82 0.82 9 21 22.3 952 7.5 18.8 18. 180L 17 36.7 49.8 955 15 33.8 46.5 962 20 42.6 58.7 946 17 36.7 49.8 955 15 33.8 46.5 3.2 18.8 962 83 0.81 13 22.3 <	160M2 160L 180L 200L 225M	8.5 13 17	19.6	29.8 31.6	930	7.5			930																							8.4	950
160L 13 28.6 31.6 942 11 24.5 27.6 957 15 34.7 39 920 13 28.6 31.6 942 11 24.9 27.6 2.5 13 945 82 0.82 9 21 22.3 952 7.5 18.8 18. 180L 17 36.7 49.8 955 15 33.8 46.5 962 20 42.6 58.7 946 17 36.7 49.8 955 15 33.8 46.5 962 20 42.6 58.7 946 17 36.7 49.8 955 15 33.8 46.5 962 20 42.6 58.7 946 17 36.7 49.8 955 15 33.8 46.5 962 49.8 96.9 18.8 46.5 96.2 80.0 10.0 96.0 49.8 955 15 33.8 46.5 96.0 80.0 10.0 96.0 22 49.5 69.9 2.88 26.6 964 86 0.803 19 44.5 <td>160L 180L 200L 225M</td> <td>13</td> <td>28.6</td> <td>31.6</td> <td></td> <td></td> <td>18</td> <td></td> <td>18.2</td> <td>944</td>	160L 180L 200L 225M	13	28.6	31.6			18																									18.2	944
180L 17 36.7 49.8 955 15 33.8 46.5 962 20 42.6 58.7 946 17 36.7 49.8 955 15 33.8 46.5 962 20 42.6 58.7 946 17 36.7 49.8 955 15 33.8 46.5 3.2 18.8 962 83 0.81 13 29.7 37.3 968 11 25.5 31.2 200L 26 56.1 82.4 956 22 49.1 69.9 964 33 62 68 942 26 56.1 82.4 956 22 49.5 69.9 2.88 26.6 964 86 0.803 19 44.5 60.5 969 17 40.5 52.4 250M1 42 80 103 960 37 70.5 91.5 965 50 99 123 950 42 80 103 960 37 70.5 91.5 965 63 121 134 947 52 97 110 958 45 84.5 95 96.6 63 121 134 947 52 97 110 958 45 84.5 95 3.1 28.2 965 90.6 0.89 39 73 83 969 33 64 71 280S 63 118 142 966 55 101.5 129.8 969 75 144 169.5 960 63 118 142 966 55 101.5 119.8 3.0 34 969 89 0.9 48 88 107.1 972 40 76 88.5 101.5 119.8 119	180L 200L 225M	17			942																											18.8	956
200L 26 56.1 82.4 956 22 49.1 69.9 964 33 62 68 942 26 56.1 82.4 956 22 49.5 69.9 2.88 26.6 964 86 0.803 19 44.5 60.5 969 17 40.5 52.0 42.0 49.5 69.9 2.88 26.6 964 86 0.803 19 44.5 60.5 969 17 40.5 52.0 42.0 49.5 69.9 2.88 26.6 964 86 0.803 19 44.5 60.5 969 17 40.5 52.0 42.0 49.5 69.9 42.0 40 80 101 947 34 70 85 957 30 62 74.4 3.1 29.9 962 88.3 0.83 26 55 64.5 968 22 50 54.0 42.0 40 40 40 40 40 40 40 40 40 40 40 40 40	200L 225M		36.7		0.55																					-						18.5	970
225M 34 70 85 957 30 62 74.4 962 40 80 101 947 34 70 85 957 30 62 74.4 962 40 80 101 947 34 70 85 957 30 62 74.4 3.1 29.9 962 88.3 0.83 26 55 64.5 968 22 50 54.2 50 5	225M	26	F 0 4																													31.4	975
250M1 42 80 103 960 37 70.5 91.5 965 50 99 123 950 42 80 103 960 37 70.5 91.5 3.1 26.5 960 89.2 0.9 32 61 79 970 28 55 69 250M2 52 97 110 958 45 84.5 95 965 63 121 134 947 52 97 110 958 45 84.5 95 3.1 28.2 965 90.6 0.89 39 73 83 969 33 64 71 280S 63 118 142 966 55 101.5 129.8 969 75 144 169.5 960 63 118 142 966 55 101.5 119.8 3.0 34 969 89 0.9 48 88 107.1 972 40 76 88.5																																52.6	973
250M2 52 97 110 958 45 84.5 95 965 63 121 134 947 52 97 110 958 45 84.5 95 965 63 121 134 947 52 97 110 958 45 84.5 95 3.1 28.2 965 90.6 0.89 39 73 83 969 33 64 71 280S 63 118 142 966 55 101.5 129.8 969 75 144 169.5 960 63 118 142 966 55 101.5 119.8 3.0 34 969 89 0.9 48 88 107.1 972 40 76 88.5																																54.2	975
280S 63 118 142 966 55 101.5 129.8 969 75 144 169.5 960 63 118 142 966 55 101.5 119.8 3.0 34 969 89 0.9 48 88 107.1 972 40 76 88.10 10.10																																	975
																																	974
																																	976
	200101	00	157	140	900	75					100	100	900	00	137	140	900	75	130	122.0	٥.١	50	909					104	970	50	90.3	82	980
750转/分 750r/min 750转/分 750r/min 750转/分 750r/min	D 1001	0	00.4	20.1	604	7.5					07.5	25.2	676	0	22.4	20.1	604	7.5	10.1	22	0.7	10.7	705					10.0	717	_	1.4	1.5	704
																										_				-		15	724
																																26.6	726
																																38.7	723
																																45	723 729
																																49.7 51	729
																																70.5	729
																																68.7	732
																																115	734
																																113.8	728
600转/分 600转r/min	313101	100	100	100	713	30					230	202	717	100	100	100.0	713	30	172	100.5	5.1	37.7	720					130	720	00	127	110.0	720
	(D. 2006	12	92	177 1	571	37					112	225.2	564	12	92	177 1	571	27	Q/I Q	152.2	2 Q	11 2	572					133 A	578	27	69	111.8	582
																																111.0	587
																																	588
																																98.5	587
																																117	589
																																119	588
																																115.6 174	592 592
																																183	592

2 电动机的工作方式及技术数据(表5-2-2) DUTY-TYPE AND TECHNICAL DATA-1

T /h → +*						S ₄ —	- S ₅												S ₄	S ₅	5						
工作方式					1	50次/时 15	Ostarts/hou	ır						300次/时	300starts	/hour					6	00次/时 600	Ostarts/hou		转 子	惯 量	
FC		2!	5%			4	0%		6	60%	4	0%		40%				6	0%			6	60%		电压	转 动	重 量
项目	Rated output	I1 Rated current	I2 Rated rotor	n speed	Rated output	I1 Rated current	I2 Rated rotor	n speed	Rated output	I1 Rated current	I2 Rated rotor	n speed	Rated output	I1 Rated current	I2 Rated rotor	n speed	Rated output	I1 Rated current	I2 Rated rotor	n speed	Rated output	I1 Rated current	I2 Rated rotor	n speed	Open circuit voltage	Inertial movement Jm	weight (kg)
机座号	KW	A	current A	r/min	KW	A	current A	r/min	KW	A	current A	r/min	KW	A	current A	r/min	KW	A	current A	r/min	KW	A	current A	r/min	(v)	(kg-m ²)	
					100	0转/分													1000 r	/min							
YZR 112M	1.6	4.75	11.3	845	1.3	4.2	8.85	890	1.0	3.75	6.57	920	1.2	4.0	8.0	900	0.9	3.7	5.87	930	0.7	3.4	4.46	946	100	0.03	73.5
132M1	2.2	6	11.2	908	2	5.7	10	913	1.7	5.3	8.4	931	1.8	5.4	8.95	926	1.6	5.1	7.87	936	1.35	4.9	6.8	945	132	0.06	96.5
132M2	3.7	9.7	13.1	915	3.5	9.2	11.2	925	2.8	8.5	9.65	940	3.3	9.4	11.9	925	2.8	8.5	9.65	940	2.3	6	7.5	950	185	0.07	107.5
160M1	5.8	15.5	27.3	927	5	14.1	23.4	935	4.8	13.8	22.7	937	4.8	14.1	23.4	935	4.5	13.8	22.4	937	3.8	12.2	17.5	946	138	0.12	153.5
160M2	7.5	18	27.6	940	7	17.1	25.6	945	6.0	15.6	21.8	954	6.0	15.6	21.8	954	5.5	14.8	19.8	959	4.0	13	14.2	970	185	0.15	159.5
160L	11	28.3	27.8	950	10	23	25	957	8	19.5	19.8	969	8.0	19.5	19.8	969	7.5	18.7	18.5	971	5.6	16.7	14.2	978	250	0.2	174
180L	15	33	43.7	960	13	29.5	37.7	965	12	28	34.6	969	12	28	34.6	969	11	26.6	31.7	972	9	23.6	22.9	978	218	0.39	230
200L	21	47	55.4	965	18.5	42.5	48.5	970	17	40.5	53.8	973	17	40.5	52.5	973	15	37	40	975	11	31.5	28.5	981	200	0.67	390
225M	28	58	70	965	25	53	62.2	969	22	50	54.5	973	22	50	54.5	973	20	46	49.4	977	15	39	36.8	982	250	0.84	398
250M1	33	63	82.6	970	30	58	74.9	973	28	54	69.8	975	26	52	64.6	977	25	50	62.1	978	17.5	39	43.2	984	250	1.52	512
250M2	42	78	90.5	967	37	70	79.3	971	33	63	70.5	975	31	60	66.1	976	30	58	63.9	977	24	49	50.9	981	290	1.78	559
280S	52	95	116	970	45	83	100	974	42	80	93.6	975	40	76	89	977	37	71	82.2	978	30	64	66.5	980	280	2.35	746.5
280M	70	130	115	972	62	114	102	975	55	90	104	975	52	98	85.5	979	47	92	77	981	37	78	61	982	370	2.86	840
					75	50转/分													750r/	min							
YZR 160L	7.5	19	22.8	712	7	18.1	21.2	716	5.8	16.4	17.3	724	6.0	16.7	18	722	5.5	15.5	14.9	727	3.8	13.7	11.2	732	205	0.2	172
180L	11	25.4	40.6	711	10	23.5	36.6	717	8	20.5	28.8	728	8.0	20.5	28.8	728	7.5	19.7	26.9	729	5.8	17.8	20.6	736	172	0.38	230
200L	15	34	54.1	713	13	30	46.6	718	12	28.5	43	720	12	28.2	43	720	11	27	39.1	724	8.0	23	28.1	731	178	0.67	317
225M	21	45	56.8	718	18.5	41	49.7	721	17	38	45.6	724	17	38	45.6	724	15	35.1	40	727	11	31	29.1	733	232	0.84	390
250M1	29	61.5	68.5	700	25	54	58.7	705	22	49	51.9	712	22	49	51.9	712	20	46	46.2	716	15	39	34.2	725	272	1.52	515
250M2	33	70	62.5	725	30	64	56.6	727	28	61	52.8	728	26	58	48.9	730	25	57	47	731	18.5	45	34.4	736	335	1.78	563
280S	42	91	85.5	719	37	83	75.6	722	33	76.2	67	726	31	74	63	728	30	72	61.5	732	24	64	49.1	733	305	2.35	745
280M	52	104	90.2	727	45	93	77.7	730	42	89	72.4	732	42	89	72.4	732	37	83	63.5	735	30	73	51.4	737	360	2.86	847.5
315S	64	118	132.7	731	60	110.5	124.2	733	56	106	115.8	733	52	100	107	735	48	94	98.8	736	35	80	71.7	740	302	7.22	1050
315M	75	142	136	725	72	136	130.7	725	65	126	117.6	727	60	120	108	729	55	116	99	729	41	100	73.7	732	372	8.68	1170
					6	600转/分													600r/m	iin							
YZR 280S	33	78.7	141.8	578	30	74	125	579	28	71	116	580	26	68	108	582	25	66	103	583	17	56	69.8	588	150	2.35	766
280M	42	98.7	154	575	37	90	136	570	33	84	118	573	31	82	110	574	28	78.5	98	577	22	72.5	75	582	172	2.86	840
315S	50	110	128.4	583	45	100	115.3	585	42	96	107.4	586	40	94	102.2	587	37	90	94.5	587	30	84	76.3	589	242	7.22	1026
315M	65	144	129	584	60	136	119	585	55	130	109	586	50	126	98.7	587	48	124	94.7	588	37	114	73	589	325	8.68	1156
355M	80	160.5	149.7	587	72	156	134.5	588	65	140	121	589	60	130	112	590	55	124	102.4	590	41	104	76.19	591	330	14.32	1520
355L1	100	185	159	586	90	170	142	588	80	155	126.5	589	75	150	119	590	70	145	111	591	50	120	78.4	594	388	17.08	1764
355L2	120	250	149.8	588	110	230	137.5	589	95	210	122.7	591	90	205	116.2	591	80	190	130.2	592	60	165	77.1	594	475	19.18	1810
400L1	145	314	223	588	132	290	199	589	120	278	180	590	110	260	168	591	96	247	148	592	75	220	114	594	395	20.81	2400
400L2	185	396	238	590	165	365	262	589	150	342	195	592	140	324	180	592	120	298	155	592	95	265	122	594	460	24.52	2950

3 电动机的结构

CONSTRUCTION

--- 3.1 绝缘等级

电动机的绝缘等级分为F级和H级两种。F级适用于冷却介质温度不超过40℃的一般场所; H级适用于冷却介质温度不超60℃ 的冶金场所, 两种电动机具有相同的电气性能。

电动机具有良好的密封性,用于一般场所的电动机防护等级为IP44,用于冶金场所的电动机防护等级为IP54。

— 3.3 冷却方式

112~132机座号为自然冷却, (IC0041), 160~355机座号为自扇冷却(IC0141) 400机座号为具有内循环通风外扇冷却, (IC0151)

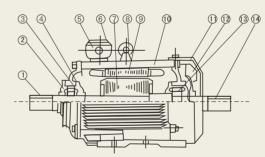
3.4 电动机安装结构型式:见表6

表(6)

安装型式 Mounting arrangement	代 号 Designation	制造范围(机座号) Availability(Framesize)	备 注 Remarks
	IM 1001	112–160	圆柱轴伸
	IM 1003	180–400	锥形轴伸
	IM 1002	112–160	圆柱轴伸
	IM 1004	180–400	锥形轴伸
	IM 3001	112–160	圆柱轴伸
	IM3003	180	锥形轴伸
	IM 3011	112–160	圆柱轴伸
	IM 3013	180–315	锥形轴伸

- 3.5 电动机的轴伸可以按用户提出的尺寸或要求制造。
- 3.6 传动方式: 电动机采用联轴器或正齿轮传动, 若采用正齿轮传动时, 其齿轮节圆最小直径应不少于轴伸直轻的2倍。
- 3.7 电动机定子出线盒位于电动机顶部,可沿电动机两侧方向出线,转子可以从端盖的两侧出线。
- 3.8 电刷型号为J201, 规格如表7

机座号 Frame size	电刷尺寸 Brush dimensions(mm)	集电环外径 Outer dia.of slip rings (mm)	机座号 Frame size	机座号电刷尺寸 Brush dimensions(mm)	集电环外径 Outer dia.of slip rings (mm)
112	20×8×32	100	250	40 × 12.5 × 50	160
132	20×8×32	100	280	40×20×60	200
160	25 × 10 × 40	112	315	40×20×60	225
180	25 × 10 × 40	125	355	50 × 20 × 60	250
200	$32 \times 12.5 \times 50$	140	400	$2(40\times20\times60)$	250
225	$32 \times 12.5 \times 50$	140			



3.9轴承:见表8

0100100100100100100

机座号	IN	11	IM3							
Mounting arrangement Frame size	负载端Drive end	非负载端Non-Drive end	负载端 Drive end	非负载端Non-Drive end						
112	308Z	308Z	308Z	308Z						
132	309Z	309Z	309Z	309Z						
160	311Z	311Z	311Z	311Z						
180	313Z	313Z	313Z	313Z						
200	32315	315Z	32315	46315						
225	32315	315Z	32315	46315						
250	32316	316	32316	46316						
280	32320	320	32320	46320						
315	32322	322	32322	46322						
355	32326	326								
400	42330	42330								

3.10电动机零部件名称:见图4

Yz型电动机结构图 Construction of motor type YZ

YZR112-400结构图 Construction of motor type YZR280-400

- 2 轴承外盖
- 3 端盖 4 轴承内盖
- 5 接线盒 6 接线盒盖 7 转子
- 8 吊环 9 定子 10 机座 11 端罩
- 12 风扇 13 轴承 14 轴
- 1 排尘孔盖 17 机座 2 轴承外盖 3 前端盖 19 端盖 4 轴承内盖 20 端罩 5 集电环 21 风扇 22 轴承 6 刷杆 7 刷握
- 8 挡尘板 9 观察窗盖 10 转子支架 11 转子压圈 12 接线盒 13 接线盒盖 15 转子

16 吊环

- 18 轴承内盖 23 轴承外盖 24 轴
- Slip rings
 Brush stud 7. Brush holder 8. Dust separator 9. Observation cover 10. Rotor spider

3. Front Endshield

4. Internal bearing cover

1. Key

7. Rotor

9. Stator

10. Frame

11. Cowl

12. Fan

14. Shaft

13. Bearing

3. Endshield

5. Terminal box

8. Slinger ring

2. External bearing cover

4. Internal bearing cover

6. Terminal box cover

1. Cover of dust clean-up 17. Frame

2. External bearing cover 18. Internal bearing cover

19. ENDSHIELD

23. External bearing cover

21. Fan

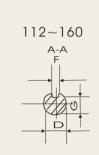
22 Bearing

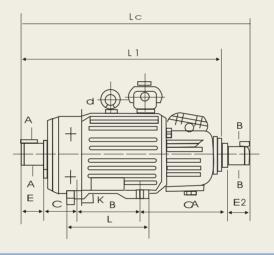
24. Shaft

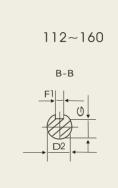
25. Key

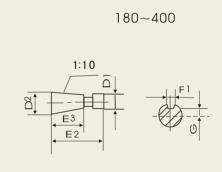
- 11. Rotor pressing ring 12. Terminal box13. Terminal box cover
- 14. Stator 15. Rotor
- 16. Slinger ring

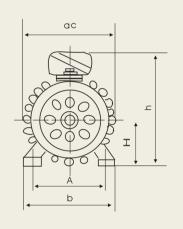
00100100100100700


16

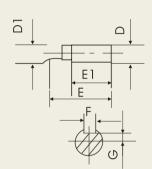

4 安装及外型尺寸


表9YZR 系列IM1安装与外形尺寸表

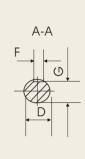

4.1 YZR IM1 112-400的外形与安装尺寸见表9 4.2 YZ IM1 112-250的外形与安装尺寸见表10 4.3 YZR IM3安装方式的外形与安装尺寸见表11 4.4 YZ IM3安装方式的外形与安装尺寸见表12

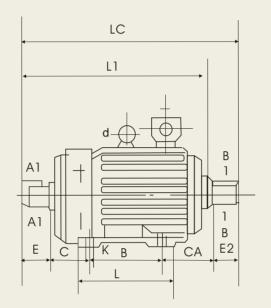

180~400

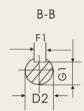
项目		安美	装尺寸 Mou	unting dimens	ions				Overa		寸(不大于 ions(not m	*					轴伸尺寸 Shaft e	extension d	imensions				
机座号 1代号	Н	А	В	С	CA	K	d	ac	b	h	I	I1	Ic	D	D1	D2	Е	E1	E2	E3	F	F1	G
112M	112 _0.5	190	140	70 ± 2.0	300	12	M10	245	250	330	235	590	670	32K6 (+0.018) (+0.002)		32K6	80 ± 0.37		80 ± 0.37		10N9 ⁰ -0.036	10N9 ⁰ 0.036	27 0
132M	132 _0.5	216	178	89 ± 2.0	300	12	M10	285	275	360	260	645	727	38K6 (+0.018) (+0.002)		38K6	80 ± 0.37		80 ± 0.37		10N9 ⁰ -0.036	10N9 ⁰ 0.036	33 0
160M	160 _0.5	254	210	108 ± 3.0	330	15	M12	325	320	420	290	758	868	48K6 (+0.018) (+0.002)		48K6	110 ± 0.44		110 ± 0.44		14N9 ⁰ -0.043	14N9 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	42.5 0
160L	160 _0.5	254	254	108 ± 3.0	330	15	M12	325	320	420	335	800	912	48K6 (+0.018) (+0.002)		48K6	110 ± 0.44		110 ± 0.44		14N9 ⁰ -0.043	14N9 0 -0.043	42.5 0
180L	180 _0.5	279	279	121 ± 3.0	360	15	M12	360	360	460	380	870	980	55*	M36×3	55*	110 ± 0.44	82	110 ± 0.44	82	14N9 ⁰ _{-0.043}	14N9 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19.9 0
200L	200 _0.5	318	305	133 ± 3.0	400	19	M16	405	405	510	400	975	1118	60*	M42×3	60*	140 ± 0.5	105	140 ± 0.5	105	16N9 ⁰ _{-0.043}	16N9 ⁰ _{-0.043}	21.4 0
225M	$225_{-0.5}^{0}$	356	311	149 ± 4.0	450	19	M16	430	455	545	410	1050	1190	65*	M42×3	65*	140 ± 0.5	105	140 ± 0.5	105	16N9 ⁰ _{-0.043}	16N9 ⁰	23.9 0
250M	250 _0.5	406	349	168 ± 4.0	540	24	M20	480	515	605	510	1195	1337	70*	M48×3	70*	140 ± 0.5	105	140 ± 0.5	105	18N9 ⁰	18N9 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.4 0
280S	280 _0.8	457	368	190 ± 4.0	540	24	M20	535	575	665	530	1265	1438	85*	M56×4	85*	170 ± 0.5	130	170 ± 0.5	130	20N9 ⁰ _{-0.052}	20N9 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31.7 0
280M	280 _0.8	457	419	190 ± 4.0	540	24	M20	535	575	665	580	1315	1489	85*	M56×4	85*	170 ± 0.5	130	170 ± 0.5	130	20N9 ⁰ -0.052	20N9 ⁰ _{-0.052}	31.7 0
315S	315 _{-1.0}	508	406	216 ± 4.0	600	28	M24	620	640	750	580	1390	1562	95*	M64×4	95*	170 ± 0.5	130	170 ± 0.5	130	22N9 ⁰ _{-0.052}	22N9 ° -0.052	35.2 0
315M	315 _1.0	508	457	216 ± 4.0	600	28	M24	620	640	750	630	1440	1613	95*	M64×4	95*	170 ± 0.5	130	170 ± 0.5	130	22N9 ⁰ _{-0.052}	22N9 ⁰ _{-0.052}	35.2 0
355M	355 _{_1.0}	610	560	254 ± 4.0	630	28	M24	710	740	840	730	1650	1864	110*	M80 × 4	110*	210 ± 0.58	165	210 ± 0.58	165	25N9 ⁰ _{-0.052}	25N9 ⁰ _{-0.052}	41.9 0
355L	355 _{_1.0}	610	630	254 ± 4.0	630	28	M24	710	740	840	800	1720	1934	110*	M80×4	110*	210 ± 0.58	165	210 ± 0.58	165	25N9 ⁰ -0.052	25N9 ° -0.052	41.9 0
400L	400 0	686	710	280 ± 4.0	630	35	M30	840	855	950	910	1865	2120	130	M100×4	130*	250 ± 0.58	200	250 ± 0.58	200	28N9 ⁰	28N9 ⁰ _{-0.052}	50 0



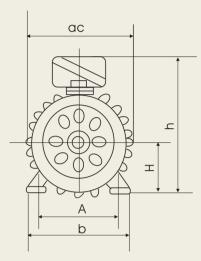
4 安装及外型尺寸


CONSTRUCTION


• 表10 YZ IM1系列安装外形尺寸表



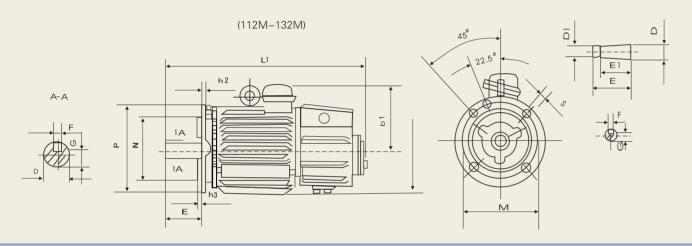
112~160

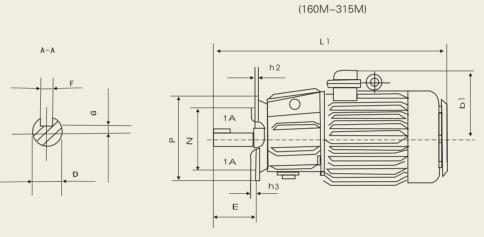


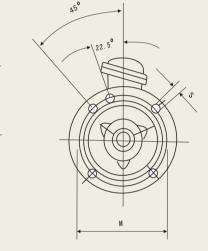
112~160

180~400

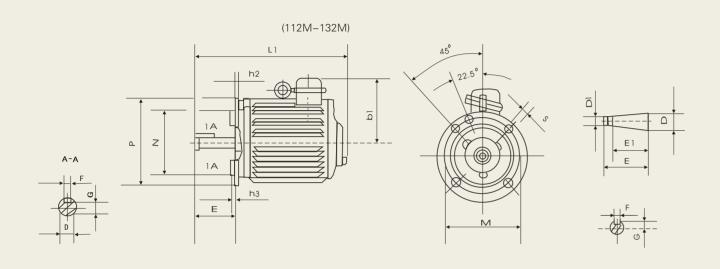
	项目			安装尺寸	Mounting dimensi	ons				0	外形/ verall dimer	尺寸(不大 ⁻ nsions(not r)					轴作	₱尺寸 Shaft exte	ension dimen	nsions			
村	1.座号	Н	А	В	С	CA	K	d	ac	b	h	I	I1	Ic	D	D1	D2	Е	E1	E2	E3	F	F1	G	G1
1	112M	112-0.5	190	140	70 ± 2.0	135	12	M10	245	250	330	235	420	505	32K6 (+0.018) (+0.002)		32K6 (+0.018) (+0.002)	80 ± 0.37		80 ± 0.37		10N9 ⁰	10N9 ⁰	27 0	27 0
1	132M	132-0.5	216	178	89 ± 2.0	150	12	M10	285	275	360	260	495	577	38K6 (+0.018) (+0.002)		38K6 (+0.018) (+0.002)	80 ± 0.37		80 ± 0.37		10N9 ⁰	10N9 ⁰	33 0	33 0
1	160M	160-0.5	254	210	108 ± 3.0	180	15	M12	325	320	420	290	608	718	48K6 (+0.018) (+0.002)		48K6 (+0.018) (+0.002)	110 ± 0.44		110 ± 0.44		14N9 ⁰ _{-0.043}	14N9 ⁰	42.5 0	42.5 0
	160L	160-0.5	254	254	108 ± 3.0	180	15	M12	325	320	420	335	650	762	48K6 (+0.018) (+0.002)		48K6 (+0.018) (+0.002)	110 ± 0.44		110 ± 0.44		14N9 ⁰	14N9 ⁰	42.5 0	42.5 0
1	180L	180-0.5	279	279	121 ± 3.0	180	15	M12	360	360	460	380	685	800	55*	M36×3	55*	110 ± 0.44	82	110 ± 0.44	82	14N9 ⁰ _{-0.043}	14N9 ⁰	19.9 0	19.9 0
2	200L	200-0.5	318	305	133 ± 3.0	210	19	M16	405	405	510	400	780	928	60*	M42×3	60*	140 ± 0.5	105	140 ± 0.5	105	16N9 ⁰	16N9 0 -0.043	21.4 0	21.4 0
2	225M	225-0.5	356	311	149 ± 4.0	258	19	M16	430	455	545	410	850	998	65*	M42×3	65*	140 ± 0.5	105	140 ± 0.5	105	16N9 ⁰ _{-0.043}	16N9 ⁰ _{-0.043}	23.9 0	23.9 0
2	250M	250-0.5	406	349	168 ± 4.0	295	24	M20	480	515	605	510	935	1092	70*	M48×3	70*	140 ± 0.5	105	140 ± 0.5	105	18N9 _{-0.043}	18N9 ⁰ -0.043	25.4 0	25.4 0

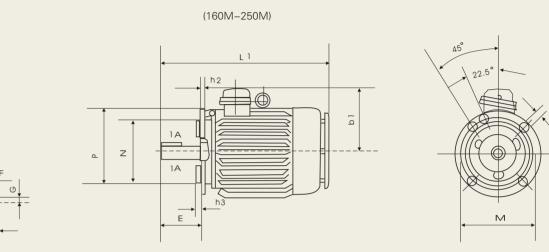

The diameter tolerance of conical shaft extension are in accordance with Jb684–65:Tolerance of Motor Mounting Dimension




^{*}圆锥形轴身的直径偏差按JB684—65《电动安装尺寸公差》规定的方法和标准确定

• 表11YZR IM3001、IM3003及IM3011、IM3013尺寸表


项目			安装尺寸	Mounting dim	ensions					外形尺寸 (不大于) (not more than)			轴伸尺寸 Bearing e	xtension dim	ensions	
代号	Dimension symbols to mounting flanges	М	N	Р	h2	h3	S	Dia of bolts	The number of holm the flange	l1	B1	D	D1	E	E1	F	G
112M	F215	215	180j6 (+0.014) (-0.011)	250	14	4	15	M12	4	595	220	32K6 (+0.018) (+0.002)		80 ± 0.37		10N9 (0) (-0.036)	27 0
132M	F265	265	230j6 (+0.016) (-0.013)	300	14	4	15	M12	4	645	230	38K6 (+0.018) (+0.002)		80 ± 0.37		(=0.030)	33 -0.2
160M L	F300	300	250j6 (+0.016) (-0.013)	350	18	5	19	M16	4	828/872	250	48K6 (+0.018) (+0.002)		110 ± 0.44		14N9 (0) (-0.043)	42.5 0
180L	F300	300	250j6 (+0.016) (-0.013)	350	18	5	19	M16	4	915	280	55*	M36×3	110 ± 0.44	82	14N9 (0) (-0.043)	19.9 0
200L	F400	400	350j6(±0.018)	450	20	5	19	M16	8	1050	320	60*	M42×3	140 ± 0.5	105	16N9 (0) (-0.043)	21.4 0
225M	F400	400	350j6(±0.018)	450	20	5	19	M16	8	1110	320	65*	M42×3	140 ± 0.5	105	16N9 (0) (-0.043)	23.9 0
250M	F500	500	450j6(±0.020)	550	22	5	19	M16	8	1266	320	70*	M48×3	140 ± 0.5	105	18N9 (0) (-0.043)	25.4 0
280S M	F500	500	450j6(±0.020)	550	22	5	19	M16	8	1370/1420	385	85*	M56×4	170 ± 0.5	130	20N9 (0) (-0.052)	31.7 0
315S M	F600	600	550j6(±0.022)	660	25	6	24	M20	8	1475/1525	435	95*	M64×4	170 ± 0.5	130	22N9 (0) (-0.052)	35.2 0



4 安装及外型尺寸

CONSTRUCTION

• 表12 YZ系列IM3001、IM3003及IM3011、IM3013尺寸表

项目			安装尺寸	Mounting dim	ensions					外形尺寸 (not mor				轴伸尺寸 Bearing ex	tension dime	ensions	
代号	Dimension							Dia of									
16.5	symbols to	М	N	Р	h2	h3	S		The number of	I1	b1	D	D1	Е	E1	F	G
机座号	mounting flanges							bolts	holm the flange								
112M	F215	215	(+0.014) 180j6 (-0.011)	250	14	4	15	M12	4	430	220	(+0.018) 32K6 (+0.002)		80		10N9 (0) (-0.036)	27 0
132M	F265	265	(+0.014) 230j6 (-0.011)	300	14	4	15	M12	4	495	230	(+0.018) 38K6 (+0.002)		80		10N9 (0) (-0.036)	33 0
160ML	F300	300	250j6 ^(+0.014) _(-0.011)	350	18	5	19	M16	4	700 /743	250	(+0.018) 48K6 (+0.002)		110		(0) 14N9 (-0.043)	42.5 0
180L	F300	300	(+0.014) 250j6 (-0.011)	350	18	5	19	M16	4	735	280	55*	M36×3	110	82	14N9 (0) (-0.043)	19.9 0
200L	F400	400	(+0.018) 350j6 (-0.018)	450	20	5	19	M16	8	855	310	60*	M42×3	140	105	(0) 16N9 (-0.043)	21.4 -0.2
225M	F400	400	350j6 (+0.018) (-0.018)	450	20	5	19	M16	8	915	320	65*	M42×3	140	105	16N9 (0) (-0.043)	23.9 0
250M	F500	500	450j6 (+0.020) (-0.020)	550	22	5	19	M16	8	1005	355	70*	M48×3	140	105	18N9 (0) (-0.043)	25.4 _{-0.2}

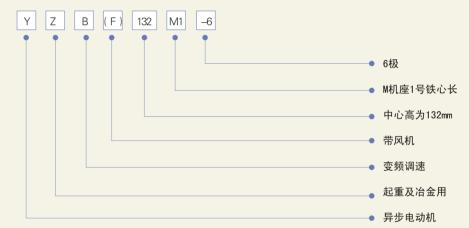
承 载 科 技 光 芒

WUXI HONGTAI

触 发 卓 越 动 力

YZB(F)系列

起重及冶金用变频调速三相异步电动机


24

YZB(F)系列起重及冶金用变频调速三相异步电动机(以下简称电动机)是将起重及冶金用三相异步电动机的特点与变频调速的优点集于一体,具有过载能力大机械强度高、调速范围宽、运行稳定的特点,其基本技术条件符合IEC34-1 国际标准和GB755国家标准的规定,电动机各项性能指标同国外九十年代水平相当。可使用于各种类型的起重及冶金机械或其它类似设备,及经常起重、制动、逆转的场合。

—— 1、电动机在下列条件下使用能正常运行。

- 1.1 环境温度不超过40℃(一般环境用)、60℃(冶金环境用)。
- 1.2 相对湿度≤90%
- 1.3 海拔不超过1000m
- 1.4 频繁地启动,制动(电气或机械的)及逆转。
- _______2、电动机额定电压为380V,额定频率为50HZ,可在5-100HZ范围内连续调速,YZB系列电动机不带强迫风冷,YZBF系列电动机带强迫风冷。
- _____3、电动机基准工作制为S3-40%

─ 4 电动机型号含意

结构

1 防护等级

电动机防护等级为IP44,也可根据用户要求制成IP54,冷却风机防护等级为IP23。

2 冷却方式

电动机冷却方式为全封闭轴向风机冷却(IP416),也可按用户要求制成其它冷却方式。

3 电动机结构安装型式见表

结构及安装型式	代 号	制造范围(机座号)
	IM1001	100–160
	IM1003	180–355
	IM3001	100–160
	IM3003	180–225
\blacksquare	IM3011	100–160
	IM3013	180–315

起重及冶金用变频调速三相异步电动机

4、绝缘等级

电动机绝缘等级为F级(一般环境用)、H级(冶金环境用)

电动机定子接线盒根据用户要求可拉于机座顶部,也可位于机座右侧或左侧。

电动机的机座号与转速及功率的对应关系

				T
同步转速(r/min)	1500	1000	750	600
极数	4	6	8	10
机 座 号		功率(kw))	
100L	2. 2			
1	3	1.5		
112M ¹ 2	4	2. 2		
12214	5. 5	3		
132M ¹	6.3	4		
160M 2	7. 5	5. 5		
2	11	7. 5		
160L	15	11	7. 5	
180L	22	15	11	
200L	30	22	15	
225M	37	30	22	
2501/	45	37	30	
250M 2	55	45	37	
1	63	55	45	37
280S ¹ 2	75	63		37
280M	90	75	55	45
1	110	90	63	55
315S 2			75	63
315M	132	110	90	75
355M		132	110	90
2551		160	132	110
355L 2		200	160	132

— 注: 1 堵转转矩/额定转矩为5HZ时值

2 最大转矩/额定转矩为50HZ时值

Note: 1 Block turnning torque at 5hz 2 Max/Rated torque at 50HZ

型 号	标称功率 (KW)	额定电流 (A)	额定转矩 (N.M)	额定转矩	最大转矩 额定转矩	转动惯量 (Kg.m2)	输出特性 OUTPUT	轴流 AXIAL		重量
TYPE				(倍)	(倍)		CHARACTOR	电压	功率	WEIGHT
	NORMAL	RATED	RATED	BLOCK TORQUE	MAX TOROUE	MONENT		VOLTAGE	POWER	(kg0
	POWER	CURRENT	TORQUE	RATED TOROUE	RATED TOROUE	OF INERTIA		(V)	(W)	
YZB100L-4	2.2	6.0	14.0	1.25–1.8	2.4	0.0091		380	90	50
YZB112M1-4	3.0	7.7	19.1	1.25–1.8	2.4	0.019	5-50HZ恒转矩	380	90	60
YZB112M2-4	4.0	10.3	25.5	1.25–1.8	2.4	0.028	50-100HZ恒功率 5-50HZ constant torque	380	90	71
YZB132M1-4	5.5	13.1	35.0	1.25–1.8	2.4	0.052	50–100HZ eonstant power	380	100	82
YZB132M2-4	6.3	15	40.1	1.25–1.8	2.6	0.063		380	100	93
YZB160M1-4	7.5	17.8	47.8	1.25-1.8	2.6	0.10		380	100	120
YZB160M2-4	11	25.2	70.0	1.25-1.8	2.8	0.13	电压-频率特性 V-F character	380	100	133
YZB160L-4	15	34.7	95.5	1.25-1.8	2.8	0.17	V	380	100	154
YZB180L-4	22	48.5	140.1	1.25–1.8	2.8	0.31	380 1	380	230	208
YZB200L-4	30	62.4	191.0	1.25-1.8	2.8	0.56		380	230	281
YZB225M-4	37	75.2	235.6	1.25-1.8	2.8	0.74	5 50 100Hz	380	300	352
YZB250M1-4	45	89.3	286.5	1.25–1.8	2.8	1.28	→ 対矩−频率特性	380	300	472
YZB250M2-4	55	109.2	350.2	1.25-1.8	2.8	1.53	T-F character	380	300	515
YZB280S1-4	63	119.5	401.1	1.25-1.8	2.8	1.94	T(%)	380	370	705
YZB280S2-4	75	142.3	477.5	1.25–1.8	2.8	2.19	100	380	370	740
YZB280M-4	90	176.8	573.0	1.25–1.8	2.8	2.42	50	380	370	780
YZB315S1-4	110	207	700.3	1.25-1.8	2.8	5.78	5 50 100Hz	380	450	1035
YZB315M-4	132	248.4	840.4	1.25-1.8	2.8	7.22		380	450	1180

起重及冶金用变频调速三相异步电动机

• 注: 1 堵转转矩/额定转矩为5HZ时值

2 最大转矩/额定转矩为50HZ时值

Note: 1 Block turnning torque at 5hz

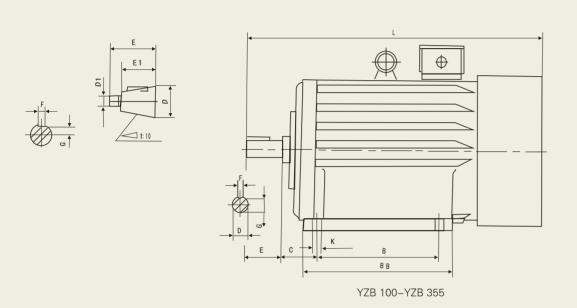
2 Max/Rated torque at 50HZ

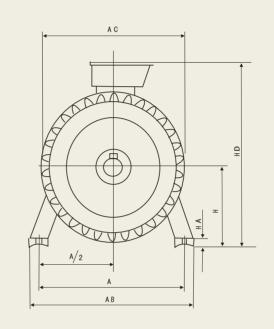
______注: 1 堵转转矩/额定转矩为5HZ时值

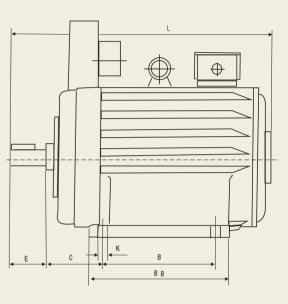
2 最大转矩/额定转矩为50HZ时值

Note: 1 Block turnning torque at 5hz

2 Max/Rated torque at 50HZ

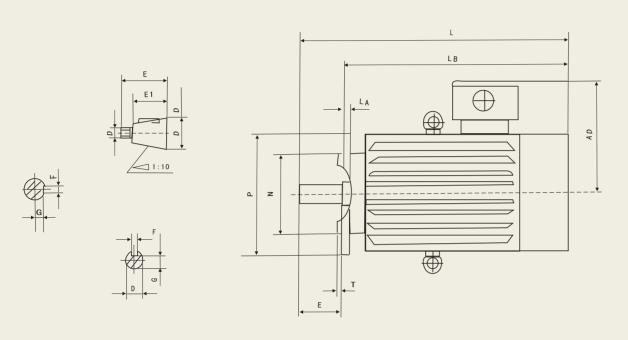

型号	标称功率	7	额定转矩	堵转转矩 ———————————————————————————————————	最大转矩	转动惯量	输出特性	轴流 AXIAI	风机 _ FAN	重量
TYPE	(KW) NORMAL	(A) RATED	(N.M) RATED TORQUE	(倍) BLOCK TORQUE	(倍) MAX TOROUE	(Kg.m2) MONENT	OUTPUT CHARACTOR	电压 VOLTAGE	功率 POWER	WEIGHT (kg0
	POWER	CURRENT	TONQUE	RATED TOROUE	RATED TOROUE	OF INERTIA		(V)	(W)	
YZB112M1-6	1.5	4.0	14.3	1.25–1.8	2.4	0.019	5-50HZ恒转矩	380	90	60
YZB112M2-6	2.2	5.8	21.0	1.25-1.8	2.4	0.028	5-100HZ恒功率	380	90	71
YZB132M1-6	3.0	7.8	28.7	1.25–1.8	2.4	0.052	5-50HZ constant torque 50-100HZ eonstant power	380	100	82
YZB132M2-6	4.0	9.6	38.2	1.25-1.8	2.4	0.063	·	380	100	93
YZB160M1-6	5.5	12.9	52.5	1.25–1.8	2.4	0.10	电压-频率特件	380	100	120
YZB160M2-6	7.5	17.6	71.6	1.25–1.8	2.6	0.13	V-F character	380	100	133
YZB160L-6	11	24.9	105.1	1.25–1.8	2.8	0.17		380	100	154
YZB180L-6	15	33.1	143.3	1.25–1.8	2.8	0.31	V 380 †	380	230	208
YZB200L-6	22	46.8	210.1	1.25–1.8	2.8	0.56		380	230	281
YZB225M-6	30	66.3	286.5	1.25-1.8	2.8	0.74		380	300	352
YZB250M1-6	37	72.6	353.4	1.25–1.8	2.8	1.28	5 50 100Hz	380	300	472
YZB250M2-6	45	89.3	429.8	1.25-1.8	2.8	1.53		380	300	515
YZB280S1-6	55	105.5	525.3	1.25-1.8	2.8	1.94	转矩-频率特性 T-F character	380	370	705
YZB280S2-6	63	120.8	601.7	1.25-1.8	2.8	2.19	1-1 Character	380	370	740
YZB280M-6	75	143.9	716.3	1.25-1.8	2.8	2.42	T(%)	380	370	780
YZB315S1-6	90	174.9	859.5	1.25-1.8	2.8	5.78	100 🛉	380	450	1035
YZB315M-6	110	213.7	1050.5	1.25-1.8	2.8	7.22		380	450	1180
YZB355M-6	132	245.1	1260.5	1.25–1.8	2.8	9.7	50	380	550	1380
YZB355L1-6	160	287.3	1528	1.25–1.8	2.8	11.6	5 50 100Hz	380	550	1550
YZB355L2-6	200	363.2	1910	1.25-1.8	2.8	14.3		380	550	1710

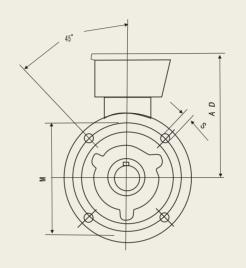

	标称功率	额定电流	额定转矩	堵转转矩 	最大转矩 一一一额定转矩	转动惯量 (Kg.m2)	输出特性	轴流. AXIAL		重量
型 号	(KW)	(A)	(N.M)	(倍)	(倍)	(Kg.IIIZ)	OUTPUT	电压	功率	WEIGHT
TYPE	NORMAL	RATED CURRENT	RATED	BLOCK TORQUE	MAX TOROUE	MONENT	CHARACTOR	VOLTAGE	POWER	(kg0
	POWER	CURRENT	TONGOL	RATED TOROUE	RATED TOROUE	OF INERTIA		(∨)	(W)	
YZB160L-8	7.5	18.1	95.5	1.25-1.8	2.6	0.17		380	100	154
YZB180L-8	11	25.8	140.1	1.25-1.8	2.8	0.31	5-50HZ恒转矩	380	230	208
YZB200L-8	15	34.7	191.0	1.25-1.8	2.8	0.56	5-30HZ恒	380	230	281
YZB225M-8	22	49.7	280.1	1.25-1.8	2.8	0.74	5-50HZ constant torque	380	300	352
YZB250M1-8	30	67	382.0	1.25-1.8	2.8	1.28	50-100HZ eonstant power	380	300	472
YZB250M2-8	37	82.6	471.1	1.25-1.8	2.8	1.53	电压-频率特性	380	300	515
YZB280S1-8	45	100.8	573.0	1.25-1.8	2.8	1.94	V-F character	380	370	705
YZB280M-8	55	121.7	700.3	1.25-1.8	2.8	2.42	V	380	370	780
YZB315S1-8	63	128.1	802.2	1.25-1.8	2.8	5.78	380	380	450	1035
YZB315S2-8	75	152.5	955.0	1.25-1.8	2.8	6.51		380	450	1105
YZB315M-8	90	176.7	1146.0	1.25-1.8	2.8	7.22		380	450	1180
YZB355M-8	110	213.4	1400.7	1.25-1.8	2.8	9.7	5 50 100Hz	380	550	1380
YZB355L1-8	132	256.1	1680.8	1.25-1.8	2.8	11.6	转矩-频率特性 T-F character	380	550	1550
YZB355L2-8	160	310.5	2037.3	1.25-1.8	2.8	14.3	T(%)	380	550	1710
YZB280S-10	37	81	604	1.25-1.8	3.0	1.94	100 🛉	380	370	705
YZB280M-10	45	106	735	1.25-1.8	3.0	2.42		380	370	780
YZB315S ₁ -10	55	119	890	1.25-1.8	3.0	5.78	50	380	450	1035
YZB315S ₂ -10	63	134	1020	1.25-1.8	3.0	6.51	5 50 100Hz	380	450	1123
YZB315M-10	75	162	1214	1.25-1.8	3.0	7.22		380	450	1192
YZB355M-10	90	184	1457	1.25-1.8	2.8	14.2		380	550	1392
YZB355L ₁ -10	110	224.7	1780	1.25-1.8	2.8	16.4		380	550	1680
YZB355L ₂ -10	132	259.6	2136	1.25-1.8	2.8	18.0		380	550	1726

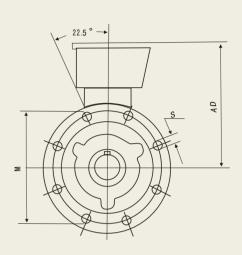


起重及冶金用变频调速三相异步电动机

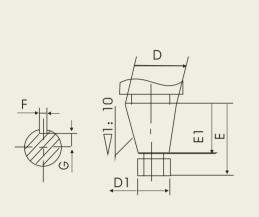
1M1001 1M1003及1M1002 1M1004卧式安装机座带底脚端盖无凸缘的电动机YZB100-YZB400

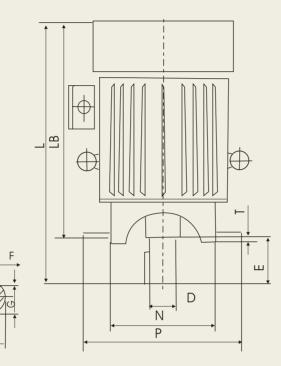

YZB 355 (B)

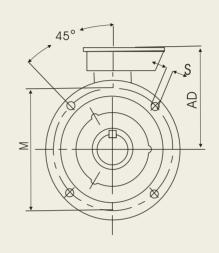

					安装尺	只寸及公差Mc	unting	Dimens	sion &To	olerance													外形尺寸 O	utline size		
机				(2)			E	E1		F	G		ŀ	Н	H	<	螺栓						
	А	A/2	В	基本 尺寸	极限 偏差	基本 尺寸	极限 偏差	D1	基本 尺寸	极限 偏差	基本 尺寸	基本 尺寸	极限 偏差	基本 尺寸	极限 偏差	基本 尺寸	极限 偏差	基本 尺寸	极限 偏差	直径	AB	AC	ВВ	НА	HD	L
100L	160	80	140	63		28	+0.008		60			8		24		100					205	215	200	12	250	500
112M	190	95	140	70	± 2.0	32	-0.004			± 0.37		10	0	27		112		12		M10	250	245	235	15	330	590
132M	216	108	178	89		38			80			10	-0.036	33		132			+0.43		275	285	260	17	360	645
160M	254	127	210	100		48					1			42.5		100			0		000	005	290	20	400	758
160L	204	127	254	108	± 3.0	40	.0.010		110	± 0.43		14		42.5		160	0	15		M12	320	325	335	20	420	800
180L	279	139.5	279	121	10.0	55	+0.018 +0.002	M36×3			82		0	19.9		180	-0.5				360	360	380	22	460	870
200L	318	159	305	133		60						10	-0.043	21.4		200		10		M16	405	405	400	25	510	975
225M	356	178	311	149		65		M42×3	140		105	16		23.9	-0.2	225		19		10110	455	430	410	28	545	1050
250M	406	203	349	168		70		M48×3				18		25.4	-0.2	250					515	480	510	30	605	1195
280S	457	228.5	368	190		85		M56×4		± 0.50		20		31.7		280		24		M20	575		530	22		1265
280M	407		419	190		00		10100 × 4	170		130	20		31.7		200			+0.52		5/5	535	580	32	665	1315
315S	F00	254	406	010	± 4.0	95		N404 - 4	170		130	22		35.2		315	0				640	000		35	750	1390
315M	508		457	216		33		M64 × 4				22	0	35.2		313	 			1.40.4	640	620	630	33	750	1440
355M	610	305	560	254		110		M80×4	210		165	25	-0.05	41.9		355	1	28		M24	740	710	730	38	840	1650
355L	010		630			. , , ,		11100 X 4	210	± 0.58	105			-71.5							740	710	800	00	040	1720

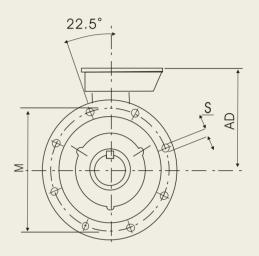


起重及冶金用变频调速三相异步电动机


1M3001 1M3003及1M1002 1M1004卧式安装机座不带底脚端盖有凸缘的电动机YZB100-YZB315


					3	安装尺寸及	.公差Mour	nting Dime	ension &To	olerance													外升	形尺寸Out	line size	
机	Ш	1	D			E	E1		F	(G		N			R		S								
座 号	□ 缘 代 号	基本尺寸	极限偏差	D1	基本尺寸	极限偏差	基本尺寸	基本尺寸	极限偏差	基本尺寸	极限偏差	M	基本尺寸	极限偏差	Р	基本尺寸	极限偏差	基本尺寸	极限偏差	螺栓 直径	T 最大	孔数 (个)	AD	L	LA	LB
100L		28	+0.009		60			8		24				+0.014									180	500		440
112M	FF215	32			80	± 0.37		10	0 -0.036	27		215	180	-0.011	250		± 2	15	± 0.43	M12	4		220	590	14	510
132M	FF265	38			00			10	0.000	33		265	230		300				0				230	640		560
160M			+0.018 +0.002								0 -0.2			+0.016		0						4	250	820		710
160L	FF300	48			110	± 0.43		14	0	42.5		300	250	-0.013			±3						250	870	18	760
180L		55		M36×3			82		-0.043	19.9							ΞS	19	± 0.52	M16	5		280	910		800
200L	FF400	60		N442 2	140	± 0.05	105	10		21.4		400	350	. 0.010	450				0			0	320	1050	20	910
225M	177400	65		M42×3	140	£ 0.03	105	16		23.9				± 0.018	450		± 4					8	320	1110	20	970





起重及冶金用变频调速三相异步电动机

1M3011 1M3013及1M1002 1M1004卧式安装机座不带底脚端盖有凸缘的电动机YZB100-YZB315

				安装	责尺寸及公差N	Mounting	Di	mension	&Tolerance														:	外形尺寸 Outl	line size	
机	П])		Е		E1	F	F	(€		١	J			R	S								
座 号	缘 代 号	基本尺寸	极限偏差	D1	基本尺寸	极限 偏差	基本 尺寸	基本尺寸	极限 偏差	基本尺寸	极限 偏差	М	基本尺寸	极限 偏差	Р	基本尺寸	极限偏差	基本尺寸	极限 偏差	螺栓 直径	最大	空数 (个)	AD	L	LA	LB
100L	FF215	2 8			60			8	0	24		215	400	+ 0 014	250								180	500		440
112M	FFZ 15	3 2			80	± 0.37		40	-0.036	27		213	180	+ 0.014 -0.011	230		± 2	15	+ 0.043	M12	4		220	590	14	510
132M	FF265	3 8	+ 0.018 + 0.002	_	00		_	10	0.000	33		265	230		300				-			4	230	640		560
160M		4 8	10.002							42.5				+ 0.016 -0.013								4	250	820		710
160L	FF300	4 0			110	± 0.43		14		42.5		300	250	-0.013	350		± 3						230	870	18	760
180L		5 5		M36×3			82		0	19.9						0		19		M16	5		280	910		800
200L	FF400	6 0	_	M42×3				40	-0.043	21.4	-0.2	400	350		450			19			3		320	1050	20	910
225M	FF400	6 5			140		105	16		23.9		400	330	± 0.018	450				+ 0.52				320	1110	20	970
250M		7 0		M48×3		± 0.50		18		25.4									0				385	1280		1140
280S	FF500	9.5		M56×4		10.00		20		31.7		500	450	± 0.020	550							_	435	1380	22	1210
280M			1V150 × 4	170		130	20	0	31.7							± 4					8	433	1430		1260	
315S	FEGOO	FF600 95	_	M64×4	170			22	-0.052			600	660	. 0.000	000			0.4		1400			F20	1490	05	1320
315M	11000	9 5		IVI04 × 4				22		35.2		600	660	± 0.022	660			24		M20	6		520	1540	25	1370

WUXIHONGTAI

冶金及起重用涡流制动绕线转子三相异步电动机

00,100 100 100

- 1、YZRW系列冶金及起重用涡流制动绕线转子三相异步电动机(以下简称涡流制动电动机)是由YZR系列电动机和装于其副轴伸 的涡流制动器组成,它把驱动和调速两种功能集于一体。其特点是:具有稳定的低速调速特性和无失控,运行可靠等优点。
- 2、涡流制动电动机在下列条件下能正常运行
 - (1)冷却介质温度不超过60℃(H级绝缘的电动机)或40℃(F级绝缘的电动机)
 - (2)海拔不超过1000m
 - (3)经常的、显著的机械振动和冲击
- 3、涡流制动电动机的湿热带气候环境的派生产品,其绕组及表面护层经过特殊的浸渍和处理,除第2条规定的条件外,并能在下 述环境条件下正常运行。
 - (1)25℃时,最大空气相对湿度为95%;
 - (2)有凝露和霉菌。
- 4、涡流制动电动机在下述负载条件下,能正常运行
 - (1)经常的起动与逆转
 - (2)经常的电气或机械制动
- 5、频率和电压

涡流制动电动机的额定频率为50HZ,额定电压为380V。涡流制动器励磁电压为80±15V的直流电压。

一 6、温升限值

涡流制动电动机各发热部分的温升限值见表1

7、工作制

涡流制动电动机的基准工作为S3,电动机基准负载持续率为40%,涡流制动器的基准负载持续率为15%,每一个工作周期均为 10分钟。涡流制动电动机在基准工作制时的额定功率,飞轮转矩(GD²)。转子开路电压及其涡流制动器的额定制动力矩和限 定制动力矩,飞轮转矩(GD2)与机座号的对应关系见表2。

─ 8 电动机型号含意 Designations of types

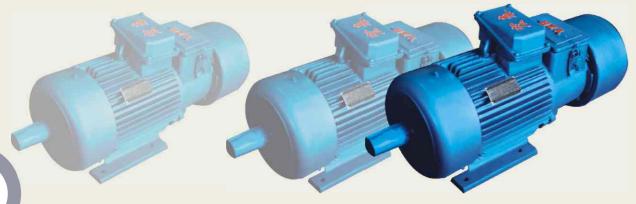
涡流制动电动机的各发热部位	F级绝缘	H级绝缘
定转子绕组温升(电阻法) 涡流制动器励磁绕组温升(电阻法)	95K	100K
集电环温升(温度计法)	90K	90K
轴承允许温度(温度计法)	95℃	115℃
涡流制动器电枢表面最高温度(温度计法) 100℃	100℃

WUXIHONGTAI

YZRW系列 冶金及起重用涡流制动绕线转子三相异步电动机

● 表2 (表2)

							涡流制	引动 电云	力机					
	1000r/min		n	-	750r/min			600r/min			涡流制动器			
机														
	功	GD ²	转 子	功	GD ²	转 子	功	GD ²	转 子	额 定 制	额 定 励	额	限 定	GD^2
			子			子			子	定	定	定转速	定	
座			开 路	. .)		开			开	制动	劢	转	制	
	率		路电	率		路电	率		路 电	力	磁电	迷	Δ)J	
			压			压			压	矩	流		制动力矩	
묵	kw	kg/m²	V	kw	kg/m²	V	kw	kg/m²	V	N/m	(A)	r/min	N/m	kg/m²
14014					_	•		_	•			400		
112M	1.5	0.11	100							7	2.3	100	26	0.5
132M ₂	2.2	0.23	132							18	2.0	0 100	64	1.2
102111 2	3.7	0.26	185								2.0	100		1.2
1 1 1 1	5.5	0.47	138											
160M ₂	7.5	0.58	185							64	3.5	100	196	2.3
L	11	0.78	250	7.5	0.78	205								
180L	15	1.5	218	11	1.5	172				118	4.0	100	245	5
200L	22	2.6	200	15	2.6	178				170	5.0	100	390	7.5
225M	30	3.3	250	22	3.2	232				235	5.0	100	540	11.5
1	37	6.0	250	30	6.0	272								
250M 2	45	7.0	290	37	7.0	335				390	5.8	100	785	21
S	55	9.2	280	45	9.2	305	37	14.0	150	F00	0.5	400	4400	4.4
280M	75	11.2	370	55	11.2	360	45	15.6	172	590	9.5	100	1180	14
S				75	28.2	302	55	28.2	242					
315M				90	34	372	75	34.0	325	980	6.0	100	1860	


9 负载持续率

负载持续率为工作周期中的负载(包括起动与电制动在内)持续时间与整个周期的时间之比,以百分数表示。

标准负载持续率为15%、25%、40%和60%四种,同一台涡流制动电动机,在同一工作制中、不同负载持续率时的输出功率不同。

在S3工作制中,不同负载持续率时涡流制动电动机的输出功率见表3

在S2工作制中,30分钟和60分钟定客时的数据分别同S₃25%和S₃40%的数据。

(表3)

												() /
FC		15%			25%			40%			60%	
极数机座号	6	8	10	6	8	10	6	8	10	6	8	10
112M	2.2			1.8			1.5			1.1		
10004	3			2.5			2.2			1.8		
132M ₂	5			4			3.7			3		
M1	7.5			6.3			5.5			5		
160M ₂	11			8.5			7.5			6.3		
L	15	11		13	9		11	7.5		9	6	
180L	20	15		17	13		15	11		13	9	
200L	33	22		26	18.5		22	15		19	13	
225M	40	33		34	26		30	22		26	18.5	
1	50	42		42	35		37	30		32	26	
250M ₂	63	52		52	42		45	37		39	32	
S	75	63	55	63	52	42	55	45	37	48	39	32
280M	100	75	63	85	63	55	75	55	45	63	48	37
S		100	75		85	63		75	55		63	48
315M		125	100		100	85		90	75		75	63

----- 10 起动等级

涡流制动电动机的起动等级表示,当其驱动的GD²不超过规定值时,涡流制动电动机每小时允许的最大起动次数。标准起动等级为6、150、300、600次/小时,其中次数以全起动次数计算。点动、电制动和反接按下列规定换算。

- 一次点动(即一次不完全的起动,在该过程中电动机的速度不超过1/4额定转速)的热等效当量为0.25次全起动。
- 一次电制动(制动到1/3额定转速)的热等当量为0.8次全起动。
- 一次反接的热等效当量为1.8次全起动。

起动等级的典型例子见表4

1	表 4	١

		状态	起动		每小时等	
工作制	每小时起动	每小时起动	每小时起动	每小时起动	效全起动	
	次数	次数	次数	次数	次 数	
S3	6	0	0	0		
S3	4	8	0	0	6	
S3	2	8	2	0		
S4	150	0	0	0		
S4	100	200	0	0		
S5	80	0	80	0		
S5	65	130	65	0	150	
S5	30	160	30	30		
S4	300	0	0	0		
S4	200	400	400	0		
S5	160	0	150	0		
S5	130	260	130	0	300	
S5	60	320	60	60		
S4	600	0	0	0		
S4	400	800	0	0		
S5	320	0	320	0	600	
S5	260	520	260	260 0		
S5	120	640	120	120		

YZRW系列 冶金及起重用涡流制动绕线转子三相异步电动机

• 在S4工作制中,不同起动等级和负载持续率时的涡流制动电动机输出功率见表5 在S4工作制中,不同CZ值和负载持续率时的输出功率

(表5)

机CZ					150							3	00				600	
		25%			40%	,)		60%			40%			60%			60%	
座 根数 FC	6	8	10	6	8	10	6	8	10	6	8	10	6	8	10	6	8	10
112 M	1.6			1.3			1			1.2			0.9			0.7		
132 M1 132 M2	2.2			2			1.7			1.8			1.6			1.4		
132 M2	3.7			3.3			2.8			3.4			2.8			2.2		
M1	5.8			5			4.8			5			4.8			3.8		
160 M2	7.5			7			6			6.0			5.5			4		
L	11	7.5		10	7		8	5.8		8	6		7.5	5.5		5.8	3.8	
180L	15	11		13	10		12	8		12	8		11	7.5		8	5.8	
200L	21	15		18.5	13		17	12		17	12		15	11		11	8	
225M	28	21		25	18.5		22	17		22	17		20	15		15	11	
250 M1	33	39		30	25		28	22		26	22		25	20		17.5	15	
M2	42	33		37	30		33	28		31	26		30	25		24	18.5	
280 S	52	42	33	45	37	30	42	33	28	40	31	26	37	30	25	30	24	17
280 M	70	52	42	62	45	37	55	42	33	52	42	31	47	37	28	37	30	22
315 S		64	50		60	45		56	42		52	40		48	37		35	30
315 M		75			72			65			60	50		55			41	

● 注:表5中给出的CZ值只考虑子电动机转子惯量的影响,不计及涡流制动器的惯量(即C=1时),在实际应用时要计及被拖动机械的惯量和涡流制动器的惯量。确定实际起动次数时应将表列数值除以按下式求得的惯量率C。

 $C = \frac{GD2m + GD2e + t}{Gd2m}$

式中GD2m----电动机转子的惯量

Guziii

GD²e+t ----折算到电动机轴上的被拖动机械的惯量与涡流制动器的惯之和 举例:有一台YZRW180L--8的涡流制动电动机,已知其用于S4 40%工作制时对应于输出功率10.5千瓦和CZ值为150。现知折算

到涡流制动电动机轴上的被拖动机械的惯量为1.7千克一米²,求实际可用的起动次数。

从表2查知YZRW180L--8的转子惯量为1.5千克-*2,涡流制动惯量为5千克--*2则

$$C = \frac{1.5 + (1.7 + 5)}{1.5} = 5.47$$

●── 从而每小时允许起动次数为

10. 基准工作制时, 涡流制动电动机在额定电压下的最大转矩对额定值之比的保证值如表6所示

(表6)

额定功率(KW)	最大转矩/额定转矩
≤5.5	2.3
>5.5 ~ 11	2.5
>11	2.8

二、结构

1、防护等级

涡流制动电动机的防护等级分为一般环境用涡流制动电动机,其电动机外壳防护等级为IP44,冶金环境用涡流制动电动机其电动机外壳防护等级为IP54,涡流制动器的防护等级为IP00。

2、冷却方法

(表7)

代 号	可供的机座号	备注
IC0041	112-132	全封闭电动机,机壳冷却,无外风扇
IC0141	160-315	全封闭扇冷式电动机,机壳有冷却筋

3、结构及安装型式

涡流制动电动机的结构及安装型式IM1001、IM1003、IM3011,IM3013。按表8的规定制造。

(表8)

结构及安装型式	代号	制造范围(机座号)			
	IM1001	112–160			
	IM1003	180–315			
H	IM3011	112–160			
	IM3013	180–225			

注:表内代号中数字的含义

第一位 1 具有端盖式轴,底脚安装的电机。

3 具有端盖式轴,其中一个端盖带凸缘,而用凸缘安装的电机。

第二位 0 在IM1中表示具有两个端盖式轴承和带底脚。

在IM3中表示具有两个端盖轴承,凸缘在驱动端,凸缘平面向着驱动端凸缘大于机座。

第三位 0 水平轴线。

1 垂直轴线,轴伸向下。

第四位 1 圆柱形轴伸,一端。

3 圆锥形轴伸,一端

4、绝缘等级 涡流制动电动机制成两种绝缘等级,即H级和F级。H级绝缘的涡流制动电动机适合在严酷的工作条件下使用。

5、接线盒 涡流制动电动机的接线盒位于机座顶部,可从机座的任一侧进行接线

6、轴承 本系列所用轴承的型号见表9

YZRW系列

冶金及起重用涡流制动绕线转子三相异步电动机

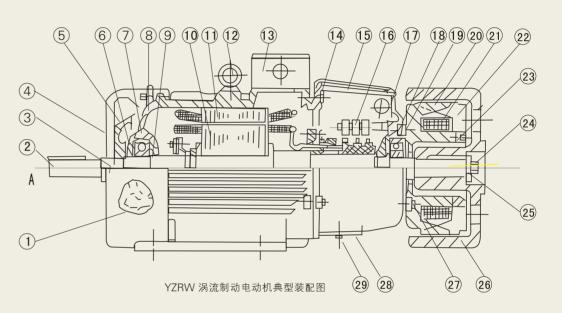
— 表9

15 -> 5	IN	11	IM3		
机座号	驱动端	非驱动端	驱动端	非驱动端	
112	308	60308	308	308	
132	309	60309	309	309	
160	311	60311	311	311	
180	313	60313	313	313	
200	32315	315	32315	46315	
225	32315	315	32315	46315	
250	32316	316	32316	46316	
280	32320	320	32320	46320	
315	32322	322	32322	46322	

___ 7、集电环

机座号112-280涡流制动电动机的集电环用塑料膜压结构

--- 8、刷握和电刷

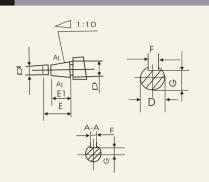

YZRW系列涡流制动电动机的刷握用ZL102铝合金压铸而成,并配有最新设计的恒压弹簧。当电刷在运行中磨损时,集电环与 电刷之间的压力能保持不变。所用电刷的牌号为J201,尺寸见表10。

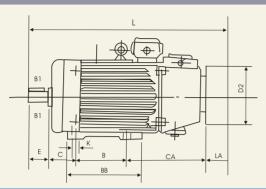
-- 9、涡流制动器的磁极和电枢

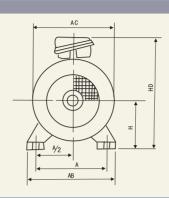
涡流制动器的磁极绕组固定在涡流制动电动机的高端盖上。涡流制动器的电枢用键联接在涡流制动电动机一端轴伸上。并用挡 板和螺栓锁紧, 防止电枢轴向移动。

表10

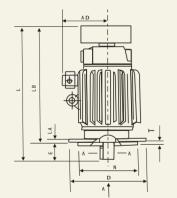
机座号	电刷尺寸 (mm)	集电环直径(mm)
112	20 × 8 × 32	100
132	20 × 8 × 32	100
160	25 × 10 × 50	112
180	25 × 10 × 50	125
200	32 × 12.5 × 50	140
225	32 × 12.5 × 50	140
250	40 × 12.5 × 50	160
280	40 × 20 × 60	200
315	40 × 20 × 60	200

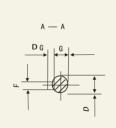

(表11)

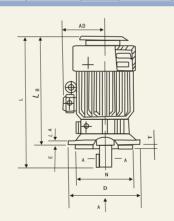

1	螺栓	11	定子	21	磁极绕组
2	平键	12	吊环螺钉	22	后磁极
3	挡圈	13	出线盒	23	螺栓
4	风罩	14	螺栓	24	螺栓
5	风扇	15	视察窗盖板	25	挡板
6	前轴承外盖	16	电刷装置	26	电枢
7	前端盖	17	高端盖	27	螺栓
8	螺钉	18	螺栓	28	排尘孔盖
9	前轴承内盖	19	后轴承	29	螺栓
10	转子	20	前磁极		

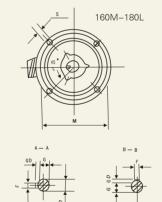


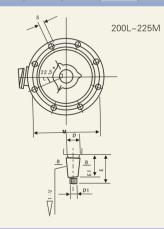
无 铝 宏 泰 WUXI HONGTAI


YZRW系列 冶金及起重用涡流制动绕线转子三相异步电动机




	10						安	装	F	₹	寸									安	装	j	5	寸				外	形	尺	寸		
	机		А	A	2		В	左右		С	左右		D	D1		E	E1	F(N9)	(G .		Н	CA		K							
-	座 号	基本尺寸	极限 偏差	基本 尺寸	极限 偏差	基本尺寸	极限 偏差	c 之差	基本 尺寸	极限 偏差	c 之差	基本尺寸	极限 偏差	基本 尺寸	基本尺寸	极限 偏差	基本尺寸	基本 尺寸	极限 偏差	基本 尺寸	极限 偏差	基本 尺寸	极限 偏差	基本尺寸	极限 偏差	极限 偏差	ВВ	AB	AC	HD	L	D2	LA
11	12M	190	± 0.7	95	± 0.5	140	± 0.7	± 0.7	70	± 2.0	0.3	32			-00	± 0.37		10	0	27		112		283	12		235	250	245	330	698	Ф220	125
13	32M	216	± 0.7	108	± 0.5	178	± 0.7	10.7	89	± 2.0	0.3	38	+0.018		80	±0.37		10	-0.036	33		132		283	12	0.40	260	275	285	360	775	Ф260	145
16	M 50 .	254		127		210 254			108			48	+0.002		110	± 0.43				42.5		160		317	15	+0.42	290	320	325	420	916	Ф315	171
18	BOL	279	± 1.05	139.5	± 0.75	279	± 1.05	± 1.05	121	±3.0	0.45	55		M36×3	110	± 0.43	82	14	0	19.9		180	0	319	15	U	335 380	360	360	460	960 1070	Ф355	241
	00L 25M	318	1.00	159		305			133			60		M42×3				16	-0.043	21.4	0	200	-0.50	375	19		400	405	405	510	1175	Ф395	222
22	25M	356		178		311			149			65		10142 \ 3	140		105			23.9	-0.20	225		425	19		410	455	430	545	1270	Φ445	245
25	50M	406	± 1.40	203		349	± 1.40	± 1.40	168	± 4.0		70		M48×3		± 0.50		18		25.4		250		488			510	515	480	605	1455	Φ495	310
28	S M	457		228.5	± 1.00	368			190	1 4.0	0.60	85		M56×4		1 0.50		20	0	31.7		280	0	500	24	+0.52	530	575	535	665	1569 1620	Φ555	341
	IVI		± 1.40			419	± 1.40	± 1.40	100						170		130		-0.052							0	530						
31	S 15 _M	508		254	± 1.0	406 457			216	± 4.0	0.60	95		M64×4				22	-0.052	35.2		315	-1.0	550	28		630	640	620	750	1635 1685	Φ610	280





112M-132M

表3	IM3011及IM3013立式妥	2. 4. 机应不带底脚.	端	轴伸向下的由动机
100	1 MOOT 1 XX 1 MOOT 1 3 1 1 1 1 5	くえて、小川生り、市川広かり		- 神中リ 1 H) モ <i>の</i> が

										安	装	Ē	尺	4		及	公	差	Ê									
机				N					S	ım	71 144		D			E				键			键槽				外形尺寸	
座	凸缘			la ma	1		_		122 000	緊栓	孔数		las em			lar an	F4		F (h9)		GD		F (N9)		G			
묵	代号	M	基本 尺寸	极限 偏差	P	LA	Т	基本尺寸	极限 偏差	直径	(个)	基本 尺寸	极限 偏差	D	基本 尺寸	极限 偏差	E1	基本尺寸	极限 偏差	基本尺寸	极限 偏差	基本尺寸	极限 偏差	基本尺寸	极限 偏差	L	LB	AD
112M	FF215	215	180	+0.014 -0.011	250	1./	1	15	+0.43	M12		32			00	+0.39		10	0			10	0	27		735	655	220
132M	FF265	265	230		300	14	7	15	0	IVITZ		38	+0.018		80	+0.55		10	-0.036	8		10	-0.036	33		805	725	230
160M 160L				+0.016							4	48	-0.002											42.5	0	1084	974 1018	250
160L	FF300	300	250	-0.013	350	18			+0.52			48			110	+0.43		14	0	9	-0.09	14	0	42.5	-0.2	1128	1018	250
180L							5	19	0.52	M16		55		M36×3			82		-0.043				0 -0.043	19.9	-0.2	1241	1131	280
200L 225L	FF400	400	350	± 0.018	450	20					8	60		M42 v 2	4.40	0.50	105	10	-0.043	10		16	-0.043	21.4		1364	1224	320
225L	11400	400	000	_ 0.010	450	20						65		M42×3	140	+0.50	105	16		10				23.9		1453	1313	520

注:凸缘止口直径对轴线的径向圆跳动及凸缘配合面对轴线的端面圆跳动公差值按JB3229-83(冶金及起重用绕线转子三相异步电动机)规定。

YZE、YZRE系列

起重及冶金用电磁制动三相异步电动机

YZE、YZRE系列起重及冶金用电磁制动三相异步电动机是YZ、YZR系列电机的派生产品,是在YZ、YZR电 机的基础上增加一个直流电磁制动器而组成,根据用户要求也可以用交流电磁制动器组成。具有过载能力大、制 动可靠、制动力矩可调、结构紧凑、控制方便、使用维护简单等特点。适用于要求频繁起动、快速制动、准确定位、 断续运转的起重及冶金机械设备上。

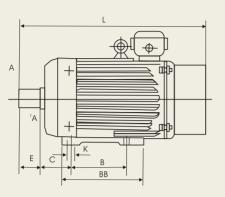
电动机的额定电压为380V、额定频率为50HZ、电磁制动器励磁电压为直流170V。

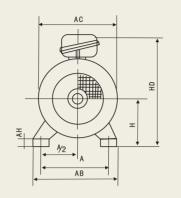
一、YZE电动机技术数据见下表

			同步	转 速			额定静态
机座号	1500)r/min	1000	r/min	750r/	min min	制动力矩
加座亏	功率	Jm	功率	Jm	功率	Jm	
	KW	Kg.m²	KW	Kg.m²	KW	Kg.m²	N.m
112M ₁	0.75	0.021					15
112M ₂	1.5	0.022					15
112M ₃	2.2	0.023	1.5	0.023			30
132M ₁	3.7	0.059	2.2	0.059			40
132M ₂	5.5	0.064	3.7	0.064			80
160M ₁	7.5	0.117	5.5	0.117			80
160M ₂	11	0.148	7.5	0.148			150
160L	15	0.198	11	0.198	7.5	0.198	200
180L			15	0.36	11	0.36	300
200L			22	0.637	15	0.632	300
225M			30	0.832	22	0.832	450
250M ₁					30	1.45	600

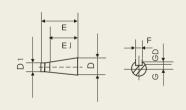
二、YZRE电动机技术数据见下表

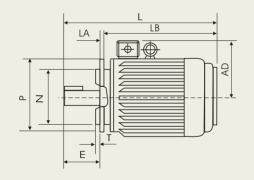
				1	司 步 转	速				额定静态
扣成口		1500r/min			1000r/min			750r/min		制动力矩
机座号	功率	Jm	转子绕组	功率	Jm	转子绕组	功率	Jm	转子绕组	
	KW	Kg.m²	开路电压 V	KW	Kg.m ²	开路电压 V	KW	Kg.m²	开路电压 V	N.m
112M ₁	0.75	0.031	100							15
112M ₂	1.5	0.033	100							15
112M ₃	2.2	0.035	132	1.5	0.04	100				15
132M ₁	3.7	0.07	187	2.2	0.07	132				40
132M ₂	5.5	0.08	139	3.7	0.08	185				40
160M ₁	7.5	0.15	185	5.5	0.12	138				80
160M ₂	11	0.18	252	7.5	0.15	185				150
160L	15	0.22	218	11	0.20	200	7.5	0.2	205	150
180L	22	0.40	250	15	0.39	218	11	0.39	172	200
200L				22	0.67	200	15	0.67	178	300
225M				30	0.84	250	22	0.82	232	450
250M ₁				37	1.52	250	30	1.57	272	600
250M ₂				45	1.78	290	37	1.77	355	750

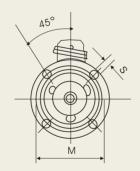


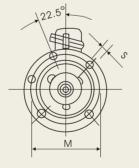

YZE、YZRE系列 起重及冶金用电磁制动三相异步电动机

三、YZE IM1001、IM1003机座带底脚、 端盖上无凸缘的电动机

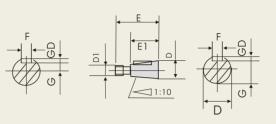


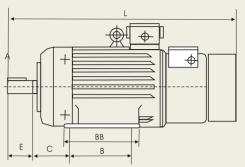


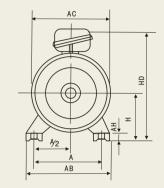



						安装	尺	寸							外	型	尺	寸	
机座号	А	A/2	В	С	D	DI	Е	El	F	G	Н	K	螺栓 直径	AB	AC	BB	НА	HD	L
112M	190	95	140	70	32				10	27	112	12	M10	250	245	235	18	335	565
132M	216	108	178	89	38		80		10	33	132	12	IVITO	275	285	260	20	365	645
160M	254	127	201	100	40					42.5	1.00			320	325	290		425	870
160L	204	127	254	108	48		110		14	42.5	160	15	M12	320	020	335	25	420	920
180L	279	139.5	279	121	55	M36 × 3		82		19.9	180			360	360	380		465	1085
200L	318	159	305	133	60	N402	1.40		16	21.4	200	19	M16	405	405	400	00	510	1170
225M	356	178	311	149	65	M42 × 3	140	105	10	23.9	225			455	430	410	28	545	1320
250M	406	203	349	168	70	M48 × 3	140		18	25.4	250	24	M20	515	480	510	30	605	1420

IM3001、IM3003、IM3011、IM3013卧式立式安装、机座不带底脚、端盖上有凸缘的电动机

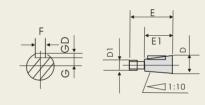


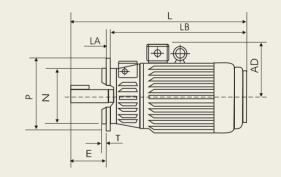


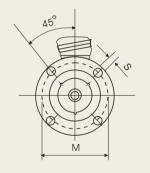


						安	装	尺	寸							外	型	尺	寸
机座号	凸缘号	D	Dl	Е	ΕΊ	F	G	М	Ν	Р	R	S	螺栓 直径	T	孔数 (个)	HD	L	LA	LB
112M	FF215	32				10	27	215	180	250		15	M12	4		220	565	1.4	485
132M	FF265	38		80		10	33	265	230	300		10	10112	4	1	230	645	14	565
160M		40					42.5								4	0/0	870		760
160L	FF300	48		110		14	42.5	300	250	350	0					260	920	18	810
180L		55	M36 × 3		82		19.9					19	M16	5		280	1085		975
200L	FF400	60	M42×3	140		16	21.4	400	350	450						320	1170	00	1030
225M	FF400	65	1V142 × 3	140	105	10	23.9	400	300	400					8	020	1320	20	1180
250M	FF500	70	M48 × 3	140		18	25.4	500	450	550						355	1490	22	1630

IM1001、IM1003机座带底脚、端盖上无凸缘的电动机 五、YZRE







						安装	尺	寸							外	型	尺	寸	
机座号	А	A/2	В	С	D	DI	Е	ΕΊ	F	G	Н	K	螺栓 直径	AB	AC	BB	НА	HD	L
112M	190	95	140	70	32				10	27	112	12	M10	250	245	235	18	335	670
132M	216	108	178	89	38		80		10	33	132	12	IVITO	275	285	260	20	365	730
160M	254	127	201	100	40		110			42.5	1.0			320	325	290		425	875
160L	204	127	254	108	48		110		14	42.5	160	15	M12	320	323	335	25	420	920
180L	279	139.5	279	121	55	$M36 \times 3$		82		19.9	180			360	360	380		465	1010
200L	318	159	305	133	60	M42×3			16	21.4	200	19	M16	405	405	400	00	510	1110
225M	356	178	311	149	65	1V142 X 3	140	105	10	23.9	225			455	430	410	28	545	1370
250M	406	203	349	168	70	$M48 \times 3$			18	25.4	250	24	M20	515	480	510	30	605	1680

六、YZRE IM3011、IM3013立式安装、机座不带底脚、端盖上有凸缘、轴伸向下的电动机

						安	装	尺	寸							外	型	尺	寸
机座号	凸缘号	D	Dl	Е	E1	F	G	М	Ν	Р	R	S	螺栓 直径	T	孔数 (个)	HD	L	LA	LB
112M	FF215	32				10	27	215	180	250		15	M12	1		220	670	1.4	590
132M	FF265	38		80		10	33	265	230	300		10	10112	4	,	230	730	14	650
160M		40					42.5								4	0/0	905		795
160L	FF300	48		110		14	42.5	300	250	350	0					260	950	18	840
180L		55	M36 × 3		82		19.9				Ŭ	19	M16	5		280	1020		910
200L	FF400	60	M42×3	140		16	21.4	400	350	450				ŭ		320	1190	00	1050
225M	FF400	65	1V142 X 3	140	105	10	23.9	400	000	400					8	020	1250	20	1110
250M	FF500	70	M48 × 3	140		18	25.4	500	450	550						355	1750	22	1610

生 产 装 备

PRODUCT LINE

■ 电机型式试验平台(ABB2300KW变频器、逆变器)

数控镗铣床

数控平头铣削中心孔机

JW31-400T双柱压力机

4M立式车床

■ 复合真空(压力)浸渍烘干机

100 100 100

■ YYQ1600型硬支动平衡机

MT-D(I)电机出厂综合检测设备

数控车床

金加工生产设备

装配喷漆流水线

客户名录 CLIENT CONTENTS

(排名不分先后)

鞍钢股份有限公司 南京钢铁股份有限公司 大起重工·起重集团有限公司 大连华锐股份有限公司 宁夏银起重型机器股份有限公司 河南卫华重型机械股份有限公司 三门峡水工机械厂 吉林水工机械有限公司 浙江省水电建筑机械有限公司 德阳市德重机械制造有限公司 绍兴市起重机总厂 浙江众擎起重机械制造有限公司 上海隊道股份有限公司 上海重型机器厂 山西森特煤焦化工程公司 无锡融威起重吊装设备有限公司 江苏万富安机械有限公司 新疆通用机械有限公司 河南豫中起重集团有限公司 河南省新乡市矿山起重机有限公司 新乡市中原起重机械总厂有限公司 洛阳起重机厂 柳州起重机器有限公司 江西起重机械总厂 开原起重机器有限责任公司 唐山国丰钢铁有限公司 唐山恒通精密薄板有限公司 宁波东力传动设备股份有限公司 南通中远船务工程有限公司 中铁大桥集团第一、三、七工程公司 二重集团(德阳)重型装备股份有限公司 中国第一重型机械(集团)公司

在品质之间 我们崇尚人性服务的力量 在硝烟所隐的大经济中 我们倾听顾客的需求 诚信为先 协作,如滴水无声 坚信,那翘首赞叹的澎湃 更是一种广阔的智慧